共查询到20条相似文献,搜索用时 0 毫秒
1.
The body shapes of both wild-caught and laboratory-reared male and female Trinidadian guppies Poecilia reticulata from two low-predation and two high-predation populations were studied, but predation regime did not seem to be the most important factor affecting body shape. Instead, complicated patterns of plasticity in body shape among populations and the sexes were found. In particular, populations differed in the depth of the caudal peduncle, which is the muscular region just anterior to the tail fin rays and from which most swimming power is generated. Strikingly, the direction of population differences in caudal peduncle depth observed in wild-caught individuals was reversed when P. reticulata were raised in a common laboratory environment. 相似文献
2.
An important step in diagnosing local adaptation is the demonstration that phenotypic variation among populations is at least in part genetically based. To do this, many methods experimentally minimize the environmental effect on the phenotype to elucidate the genetic effect. Minimizing the environmental effect often includes reducing possible environmental maternal effects. However, maternal effects can be an important factor in patterns of local adaptation as well as adaptive plasticity. Here, we report the results of an experiment with males from two populations of the poeciliid fish, Heterandria formosa, designed to examine the relative influence of environmental maternal effects and environmental effects experienced during growth and development on body morphology, and, in addition, whether the balance among those effects is unique to each population. We used a factorial design that varied thermal environment and water chemistry experienced by mothers and thermal environment and water chemistry experienced by offspring. We found substantial differences between the two populations in their maternal and offspring norms of reaction of male body morphology to differences in thermal environment and water chemistry. We also found that the balance between maternal effects and postparturition environmental effects differed from one thermal regime to another and among traits. These results indicate that environmental maternal effects can be decidedly population‐specific and, as a result, might either contribute to the appearance of or blur evidence for local adaptation. These results also suggest that local adaptation might also occur through the evolution of maternal norms of reaction to important, and varying, environmental factors. 相似文献
3.
IGNACIO M. SOTO ESTEBAN R. HASSON MAURA H. MANFRIN 《Biological journal of the Linnean Society. Linnean Society of London》2008,95(4):655-665
A central issue in evolutionary biology is to understand the mechanisms promoting morphological evolution during speciation. In a previous study, we showed that the Neotropical cactophilic sibling species Drosophila gouveai and Drosophila antonietae can be reared in media prepared with their presumptive natural host plants (Pilosocereus machrisis and Cereus hildmaniannus) and that egg to adult viability is not independent of the cactus host. In the present study, we investigate the effects of ecological and genetic factors on interspecific divergence in wing morphology, in relation to the pattern of wing venation and phenotypic plasticity in D. gouveai and D. antonietae, by means of the comparative analysis of isofemale lines reared in the two cactus hosts. The species differed significantly in wing size and shape, although specific differences were mainly localized in a particular portion of the wing. We detected significant variation in form among lines, which was not independent of the breeding cactus, suggesting the presence of genetic variation for phenotypic plasticity and wing shape variation in both species. We discuss the results considering the plausible role of host plant use in the evolutionary history of cactophilic Drosophila inhabiting the arid zones of South America. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 655–665. 相似文献
4.
It is critical to study factors that are important for origin and maintenance of biological diversity. A comparative approach involving a large number of populations is particularly useful. We use this approach to study the relationship between ecological factors and phenotypic diversity in Icelandic Arctic charr (Salvelinus alpinus). Numerous populations of small benthic charr have evolved in lava springs in Iceland. These charr appear morphologically similar, but differ in important morphological features related to feeding. We found a clear relationship between diversity in morphology, diet, and ecological factors among populations. In particular, there were clear differences in morphology and diet between fish coming from habitats where the lava spring flowed on as a stream compared to habitats where the lava spring flowed into a pond. Our study shows that ecological factors are important for the origin and maintenance of biological diversity. The relationship between phenotype and ecological factors are observed on a fine scale, when comparing numerous populations that are phenotypically similar. This strongly suggests that for understanding, managing, and conserving biological diversity important ecological variables have to be taken into the account. 相似文献
5.
DAVID JAMES PÁEZ RICHARD HEDGER LOUIS BERNATCHEZ JULIAN J. DODSON 《Freshwater Biology》2008,53(8):1544-1554
1. Salmonids, like many other fish species, exhibit morphological plasticity to variations in water current velocity. However, little is known about how this response varies with age and alternative sexual tactics that usually coexist in the same area. We therefore sampled immature 1- and 2-year-old and sexually mature Salmo salar parr to determine how the morphological response to slow and rapid water currents varies across these groups.
2. Both 1- and 2-year-old immature parr in rapid habitats can be distinguished from individuals in slow habitats using a combination of fin measurements. In contrast, body shape measurements were useful only to distinguish 2-year-old individuals in the different habitat types. We also showed that mature parr are notably robust, irrespective of habitat type. For these individuals, only their body length differed between slow and rapid water currents, being bigger in slow water currents.
3. Our results imply that fins are the first structures to respond to water current velocity, followed by changes in body shape as individuals grow bigger. The robust phenotype observed for mature parr is likely to pose extra limitations on movement due to an increase in drag forces, thus contributing to their smaller size in rapid water currents. 相似文献
2. Both 1- and 2-year-old immature parr in rapid habitats can be distinguished from individuals in slow habitats using a combination of fin measurements. In contrast, body shape measurements were useful only to distinguish 2-year-old individuals in the different habitat types. We also showed that mature parr are notably robust, irrespective of habitat type. For these individuals, only their body length differed between slow and rapid water currents, being bigger in slow water currents.
3. Our results imply that fins are the first structures to respond to water current velocity, followed by changes in body shape as individuals grow bigger. The robust phenotype observed for mature parr is likely to pose extra limitations on movement due to an increase in drag forces, thus contributing to their smaller size in rapid water currents. 相似文献
6.
Gabrielle Zimmermann Pierre Bosc Pierre Valade Raphaël Cornette Nadia Améziane Vincent Debat 《Acta zoologica》2012,93(4):492-500
Zimmermann, G., Bosc, P., Valade, P., Cornette, R., Améziane, N. and Debat, V. 2011. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. —Acta Zoologica (Stockholm) 93 : 492–500. We investigated the structure of carapace shape variation in six populations of Macrobrachium australe Guérin‐Méneville 1838 (Crustacea: Decapoda: Palaemonidae) from Reunion Island (Indian Ocean) freshwaters. The morphometric analysis revealed the occurrence of two morphotypes corresponding to two different types of habitats. Individuals living in lotic habitats present a thick carapace armed with a short, robust and straight rostrum, while individuals from lentic habitats have a slender carapace armed with a thin long rostrum orientated upward. This difference suggests an adaptation to lotic disturbances and is tentatively interpreted as adaptive phenotypic plasticity. In such amphidromous organisms regressing to freshwaters after a marine larval phase, selection for physiological and developmental flexibility might facilitate further adaptation and allows the colonisation of a wide panel of environmentally different and sometimes geographically distant insular streams. 相似文献
7.
A. B. Mazzarella K. L. Voje T. H. Hansson A. Taugbøl B. Fischer 《Journal of evolutionary biology》2015,28(3):667-677
Phenotypic plasticity is a major factor contributing to variation of organisms in nature, yet its evolutionary significance is insufficiently understood. One example system where plasticity might have played an important role in an adaptive radiation is the threespine stickleback (Gasterosteus aculeatus), a fish that has diversified after invading freshwater lakes repeatedly from the marine habitat. The parallel phenotypic changes that occurred in this radiation were extremely rapid. This study evaluates phenotypic plasticity in stickleback body shape in response to salinity in fish stemming from a wild freshwater population. Using a split‐clutch design, we detected surprisingly large phenotypically plastic changes in body shape after one generation. Fish raised in salt water developed shallower bodies and longer jaws, and these changes were consistent and parallel across families. Although this work highlights the effect of phenotypic plasticity, we also find indications that constraints may play a role in biasing the direction of possible phenotypic change. The slopes of the allometric relationship of individual linear traits did not change across treatments, indicating that plastic change does not affect the covariation of traits with overall size. We conclude that stickleback have a large capacity for plastic phenotypic change in response to salinity and that plasticity and evolutionary constraints have likely contributed to the phenotypic diversification of these fish. 相似文献
8.
Water impoundment imposes fundamental changes on natural landscapes by transforming rivers into reservoirs. The dramatic shift in physical conditions accompanying the loss of flow creates novel ecological and evolutionary challenges for native species. In this study, we compared the body shape of Cyprinella venusta collected from eight pairs of river and reservoir sites across the Mobile River Basin (USA). Geometric morphometric analysis of the body shape showed that river populations differ from reservoir populations. Individuals inhabiting reservoirs are deep-bodied and have a smaller head, a more anterior dorsal fin, a shorter dorsal fin base and a more ventral position of the eye than C. venusta in streams. The direction of shape divergence within reservoir–river pairs was consistent among pairs of sites, and the shape of C. venusta in reservoirs is strongly correlated with reservoir size. These findings show that physical characteristics of reservoirs drive changes in the morphological attributes of native fish populations, indicating that water impoundment may be an important, yet largely unrecognized, evolutionary driver acting on aquatic biodiversity. 相似文献
9.
A. L. M. Macagno A. Pizzo A. Roggero A. Rolando C. Palestrini 《Journal of Zoological Systematics and Evolutionary Research》2009,47(1):96-102
Horns of Onthophagus beetles are typical examples of phenotypically plastic traits: they are expressed as a function of environmental (nutritional) stimuli, and their reaction norm (i.e. the full set of horn lengths expressed as a response to different degrees of nutritional states) can be either linear or threshold-dependent. Horned males of Onthophagus ( Palaeonthophagus ) fracticornis (Preyssler, 1790) bear a single triangular cephalic protrusion of vertex carina, which has received phylogenetic support as the most primitive horn shape in the genus. Inter- and intra-sexual patterns of horn expression were studied in O. fracticornis by means of static allometries while associated variations in head shape were assessed using geometric morphometric techniques. The relation between log-transformed measurements of body size and vertex carina supported an isometric scaling in females. On the contrary, a sigmoidal model described better the horn length-body size allometry in males, with a switch point between alternative morphs at a pronotum width of 3.88 mm. Sigmoidal static allometries of horns in Onthophagus populations arise from a threshold-dependent developmental process of horn growth. This process underlies the expression of both plesiomorphic and apomorphic horn shapes in the genus. Given that the single-horn model has been identified as primitive, we propose that such a developmental process giving rise to it may be evolutionarily ancient as well. Horn expression was accompanied by a deformation of the head which makes minor and major morphs appear even more different. Therefore, in this species both horn and head shape expression contribute to male dimorphism. 相似文献
10.
P. K. Rowiński F. Mateos‐Gonzalez E. Sandblom F. Jutfelt A. Ekström L. F. Sundström 《Journal of fish biology》2015,87(5):1234-1247
The consequences of elevated temperature on body shape were investigated by comparing European perch Perca fluviatilis from the Forsmark area of the Baltic Sea to P. fluviatilis from a nearby Biotest enclosure. The Biotest is a man‐made enclosure within the Baltic Sea that has received warm water from a nuclear power plant since 1980, resulting in temperatures that are elevated 5–10° C relative to the surrounding Baltic Sea. Sampled fish ranged from young‐of‐the‐year to 14 years. Geometric morphometrics and multivariate statistical analysis revealed significant morphological differences between individuals of P. fluviatilis from these two habitats. Most importantly, relative shape changed with size, with small individuals of P. fluviatilis from Biotest being characterized by a deeper body shape and a larger caudal peduncle than the smaller Baltic individuals. In large specimens, smaller differences were found with Biotest individuals being more slender than Baltic individuals. These results show that, in order to have a full understanding of the biological effects of elevated temperatures, studies that cover the entire size range of organisms will be important. Apart from the direct influence of temperature on growth rate and body shape, other ecological factors affected by temperature are discussed as possible contributors to the observed differences between the two populations. 相似文献
11.
12.
Sam Paplauskas;Oscar Morton;Mollie Hunt;Ashleigh Courage;Stephanie Swanney;Stuart R. Dennis;Dörthe Becker;Stuart K. J. R. Auld;Andrew P. Beckerman; 《Ecology and evolution》2024,14(2):e10913
All animals and plants respond to changes in the environment during their life cycle. This flexibility is known as phenotypic plasticity and allows organisms to cope with variable environments. A common source of environmental variation is predation risk, which describes the likelihood of being attacked and killed by a predator. Some species can respond to the level of predation risk by producing morphological defences against predation. A classic example is the production of so-called ‘neckteeth’ in the water flea, Daphnia pulex, which defend against predation from Chaoborus midge larvae. Previous studies of this defence have focussed on changes in pedestal size and the number of spikes along a gradient of predation risk. Although these studies have provided a model for continuous phenotypic plasticity, they do not capture the whole-organism shape response to predation risk. In contrast, studies in fish and amphibians focus on shape as a complex, multi-faceted trait made up of different variables. In this study, we analyse how multiple aspects of shape change in D. pulex along a gradient of predation risk from Chaoborus flavicans. These changes are dominated by the neckteeth defence, but there are also changes in the size and shape of the head and the body. We detected change in specific modules of the body plan and a level of integration among modules. These results are indicative of a complex, multi-faceted response to predation and provide insight into how predation risk drives variation in shape and size at the level of the whole organism. 相似文献
13.
The threespine stickleback (Gasterosteus aculeatus) has emerged as an important model organism in evolutionary ecology, largely due to the repeated, parallel evolution of divergent morphotypes found in populations having colonized freshwater habitats. However, morphological divergence following colonization is not a universal phenomenon. We explore this in a large-scale estuarine ecosystem inhabited by two parapatric stickleback demes, each physiologically adapted to divergent osmoregulatory environments (fresh vs. saline waters). Using geometric morphometric analyses of wild-caught individuals, we detected significant differences between demes, in addition to sexual dimorphism, in body shape. However, rearing full-sib families from each deme under controlled, reciprocal salinity conditions revealed no differences between genotypes and highly significant environmental effects. It is also noteworthy that fish from both demes were fully plated, whether found in the wild or reared under reciprocal salinity conditions. Although we found significant heritability for body shape, we also noted significant direct environmental effects for many latent shape variables. Moreover, we found little evidence for diversifying selection acting on body size and shape (Q(ST) ). Nevertheless, uniform compressive variation did exceed neutral expectations, yet despite evidence of both allometry and genetic correlation with body length, we detected no correlated signatures of selection. Taken together, these results suggest that much of the morphological divergence observed in this system is the result of plastic responses to environmental variation rather than adaptive differentiation. 相似文献
14.
Where organisms undergo radical changes in habitat during ontogeny, dramatic phenotypic reshaping may be required. However, physiological and functional interrelationships may constrain the extent to which an individual's phenotype can be equally well adapted to their habitat throughout the life cycle. The phenotypic response of tadpoles to the presence of a predator has been reported for several species of anuran but the potential post-metamorphic consequences have rarely been considered. We reared common frog Rana temporaria tadpoles in the presence or absence of a larval odonate predator, Aeshna juncea , and examined the consequences of the resulting phenotypic adjustment in the aquatic larval stage of the life cycle for the terrestrial juvenile phenotype. In early development tadpoles developed deeper tail fins and muscles in response to the predator and, in experimental trials, swam further than those reared in the absence of a predator. While the difference in swimming ability remained significant throughout the larval period, by the onset of metamorphosis we could no longer detect any differences in the morphological parameters measured. The corresponding post-metamorphic phenotypes also did not initially differ in terms of morphology. At 12 weeks post-metamorphosis, however, froglets that developed from predator-exposed tadpoles swam more slowly and less far than those that developed from tadpoles reared in the absence of predators, the opposite trend to that observed in the larval stage of the life cycle, and had narrower femurs. These results suggest that there may be long-term costs for subsequent life-history stages of tailoring the larval phenotype to prevailing environmental conditions. 相似文献
15.
Vincent Debat Allan Debelle Ian Dworkin 《Evolution; international journal of organic evolution》2009,63(11):2864-2876
The phenotypic effects of genetic and environmental manipulations have been rarely investigated simultaneously. In addition to phenotypic plasticity, their effect on the amount and directions of genetic and phenotypic variation is of particular evolutionary importance because these constitute the material for natural selection. Here, we used heterozygous insertional mutations of 16 genes involved in the formation of the Drosophila wing. The flies were raised at two developmental temperatures (18°C and 28°C). Landmark-based geometric morphometrics was used to analyze the variation of the wing size and shape at different hierarchical levels: among genotypes and temperatures; among individuals within group; and fluctuating asymmetry (FA). Our results show that (1) the phenotypic effects of the mutations depend on temperature; (2) reciprocally, most mutations affect wing plasticity; (3) both temperature and mutations modify the levels of FA and of among individuals variation within lines. Remarkably, the patterns of shape FA seem unaffected by temperature whereas those associated with individual variation are systematically altered. By modifying the direction of available phenotypic variation, temperature might thus directly affect the potential for further evolution. It suggests as well that the developmental processes responsible for developmental stability and environmental canalization might be partially distinct. 相似文献
16.
E. Georgakopoulou D. G. Sfakianakis † S. Kouttouki P. Divanach ‡ M. Kentouri † G. Koumoundouros § 《Journal of fish biology》2007,70(1):278-291
To exam whether the temperature experienced by fishes at early developmental stages can influence their phenotype at subsequent stages, the model species used, European sea bass Dicentrarchus labrax was subjected to water temperatures of 15 or 20° C during the half-epiboly stage until the metamorphosis. Meristic and morphometric characters at three different stages, well after the end of the thermal treatments, were explored. Body shape and most of the meristic characters were significantly affected by the environmental temperature during their early life stages. Fish body shape at 15° C tended to be more slender than at 20° C. The dorsal spines and soft rays, the pectoral lepidotrichia and caudal dermatotrichia were significantly affected. Phenotypic differences due to the two thermal regimes are discussed in terms of their functional meaning during the transition from the planktonic to the littoral niche. 相似文献
17.
The primary function of the gastropod shell is protection. However, shells that function well in one environment may be maladaptive in another. Upon infection, the snail shell protects internal parasites and it is to the parasite's advantage to optimize, or not interfere with, shell functionality. However, parasites, particularly trematodes, are often pathogenic and it is not clear if parasitism will induce environment‐dependent or ‐independent changes to gastropod shells. We conducted a field study and a complementary laboratory experiment to examine the effects of trematode parasitism on shell characteristics (shape, size, and crush resistance) of Physa acuta snails in flow and nonflow environments using geometric morphometrics and crush assays. Field results indicate wetland (nonflow) snails had large, crush resistant shells with narrow apertures and tall spires. In contrast, stream (flow) snails had small, weak shells with wide apertures and short spires. Parasitism had no apparent effect on the crush resistance of wetland snails but significantly reduced the crush resistance of stream snails. Parasitism had no significant effect on overall shell shape in stream or wetland snails. Similar to the results of our field study, nonflow tank snails had significantly more crush resistant shells than flow tank snails. Additionally, the shapes of flow and nonflow tank snails significantly differed where nonflow tank snails resembled wetland snails and flow tank snails resembled stream snails. For laboratory snails, parasitism reduced crush resistance regardless of flow/nonflow treatment. Our results demonstrate that habitat and/or flow treatment was the primary factor affecting P. acuta shell morphology and that trematode parasitism played a secondary role. J. Morphol. 277:316–325, 2016. © 2015 Wiley Periodicals, Inc. 相似文献
18.
The body shape of 1303 adult male three-spined stickleback Gasterosteus aculeatus from 118 populations on Haida Gwaii archipelago off the mid-coast of British Columbia was investigated using discriminant function analysis on partial warp scores generated from 12 homologous landmarks on a digital image of each fish. Results demonstrated geographical differences in adult body shape that could be predicted by both abiotic and biotic factors of the habitat. Populations with derived shape (CV1−), including thick peduncles, posterior and closely spaced dorsal spines, anterior pelvis, small dorsal and anal fins, were found in small, shallow, stained ponds, and populations with less derived shape (CV1+), with small narrow peduncles, anterior and widely spaced dorsal spines, posterior pelvis, large dorsal and anal fins were found in large, deep, clear lakes. This relationship was replicated between geographic regions; divergent mtDNA haplotypes in lowland populations; between predation regimes throughout the archipelago, and in each geographical region and between predation regimes in lowland populations monomorphic for the Euro and North American mtDNA haplotype. There were large-bodied populations with derived shape (CV2−), including small heads and shallow elongate bodies in open water habitats of low productivity, and populations with smaller size and less derived shape (CV2+), with large heads and deeper bodies in higher productivity, structurally complex habitats. This relationship was replicated between geographic regions, and partially between divergent mtDNA haplotypes in lowland populations. Field tests for phenotypic plasticity of body shape suggest that <10% of the total variation in body shape among populations throughout the archipelago can be attributed to plasticity. 相似文献
19.
Martin Husemann Michael Tobler Cagney McCauley Baoqing Ding Patrick D. Danley 《Ecology and evolution》2017,7(12):4336-4346
Phenotypic differences may have genetic and plastic components. Here, we investigated the contributions of both for differences in body shape in two species of Lake Malawi cichlids using wild‐caught specimens and a common garden experiment. We further hybridized the two species to investigate the mode of gene action influencing body shape differences and to examine the potential for transgressive segregation. We found that body shape differences between the two species observed in the field are maintained after more than 10 generations in a standardized environment. Nonetheless, both species experienced similar changes in the laboratory environment. Our hybrid cross experiment confirmed that substantial variation in body shape appears to be genetically determined. The data further suggest that the underlying mode of gene action is complex and cannot be explained by simple additive or additive‐dominance models. Transgressive phenotypes were found in the hybrid generations, as hybrids occupied significantly more morphospace than both parentals combined. Further, the body shapes of transgressive individuals resemble the body shapes observed in other Lake Malawi rock‐dwelling genera. Our findings indicate that body shape can respond to selection immediately, through plasticity, and over longer timescales through adaptation. In addition, our results suggest that hybridization may have played an important role in the diversification of Lake Malawi cichlids through creating new phenotypic variation. 相似文献
20.
Patrick T. Rohner Armin P. Moczek 《Evolution; international journal of organic evolution》2020,74(9):2059-2072
Understanding the interplay between genetic differentiation, ancestral plasticity, and the evolution of plasticity during adaptation to environmental variation is critical to predict populations’ responses to environmental change. However, the role of plasticity in rapid adaptation in nature remains poorly understood. We here use the invasion of the horned beetle Onthophagus taurus in the United States during the last half century to study the contribution of ancestral plasticity and post-invasion evolution of plastic responses in rapid population differentiation. We document latitudinal variation in life history and morphology, including genetic compensation in development time and body size, likely adaptive responses to seasonal constraints in the North. However, clinal variation in development time and size was strongly dependent on rearing temperature, suggesting that population differentiation in plasticity played a critical role in successful adaptation on ecological timescales. Clinal variation in wing shape was independent of ancestral plasticity, but correlated with derived plasticity, consistent with evolutionary interdependence. In contrast, clinal variation in tibia shape aligned poorly with thermal plasticity. Overall, this study suggests that post-invasion evolution of plasticity contributed to range expansions and concurrent adaptation to novel climatic conditions. 相似文献