共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Gamble E. Greenbaum T. R. Jackman A. P. Russell A. M. Bauer 《Journal of evolutionary biology》2017,30(7):1429-1436
We published a phylogenetic comparative analysis that found geckos had gained and lost adhesive toepads multiple times over their long evolutionary history (Gamble et al., PLoS One, 7, 2012, e39429). This was consistent with decades of morphological studies showing geckos had evolved adhesive toepads on multiple occasions and that the morphology of geckos with ancestrally padless digits can be distinguished from secondarily padless forms. Recently, Harrington & Reeder (J. Evol. Biol., 30, 2017, 313) reanalysed data from Gamble et al. (PLoS One, 7, 2012, e39429) and found little support for the multiple origins hypothesis. Here, we argue that Harrington and Reeder failed to take morphological evidence into account when devising ancestral state reconstruction models and that these biologically unrealistic models led to erroneous conclusions about the evolution of adhesive toepads in geckos. 相似文献
2.
Shannon E. Keating Aaron H. Griffing Stuart V. Nielsen Daniel P. Scantlebury Tony Gamble 《Journal of evolutionary biology》2020,33(9):1316-1326
Current understanding of sex chromosome evolution is largely dependent on species with highly degenerated, heteromorphic sex chromosomes, but by studying species with recently evolved or morphologically indistinct sex chromosomes we can greatly increase our understanding of sex chromosome origins, degeneration and turnover. Here, we examine sex chromosome evolution and stability in the gecko genus Aristelliger. We used RADseq to identify sex‐specific markers and show that four Aristelliger species, spanning the phylogenetic breadth of the genus, share a conserved ZZ/ZW system syntenic with avian chromosome 2. These conserved sex chromosomes contrast with many other gecko sex chromosome systems by showing a degree of stability among a group known for its dynamic sex‐determining mechanisms. Cytogenetic data from A. expectatus revealed homomorphic sex chromosomes with an accumulation of repetitive elements on the W chromosome. Taken together, the large number of female‐specific A. praesignis RAD markers and the accumulation of repetitive DNA on the A. expectatus W karyotype suggest that the Z and W chromosomes are highly differentiated despite their overall morphological similarity. We discuss this paradoxical situation and suggest that it may, in fact, be common in many animal species. 相似文献
3.
Eye shape and activity pattern in birds 总被引:3,自引:0,他引:3
Many aspects of an animal's ecology are associated with activity pattern, the time of day when that animal is awake and active. There are two major activity patterns: diurnal , active during the day in a light-rich, or photopic, environment, and nocturnal , active after sunset in a light-limited, or scotopic, environment. Birds are also cathemeral , or equally likely to be awake at any time of day, or crepuscular , awake and active at dawn and dusk. Each of these activity patterns is associated with different levels of ambient light. This study examines how the morphology (size and shape) of the eye varies according to these different light environments for birds in a phylogenetic context. Activity pattern has a significant influence on eye shape and size in birds. Birds that are adapted for scotopic vision have eye shapes that are optimized for visual sensitivity, with larger corneal diameters relative to axial lengths. Birds that are adapted for photopic vision have eye shapes that are optimized for visual acuity, with larger axial lengths relative to corneal diameters. Birds adapted for scotopic vision also exhibit absolutely larger corneal diameters and axial lengths than do photopic birds. The results indicate that the light level under which the bird functions has a more significant influence on eye shape than phylogeny. 相似文献
4.
5.
A prominent scenario for the evolution of reptilian placentation infers that placentotrophy arose by gradual modification of a simple vascular chorioallantoic placenta to a complex structure with a specialized region for nutrient transfer. The structure of the chorioallantoic placenta of Niveoscincus ocellatus, apparently described originally from a single embryonic stage, was interpreted as a transitional evolutionary type that provided support for the model. Recently, N. ocellatus has been found to be as placentotrophic as species with complex chorioallantoic placentae containing a specialized region called a placentome. We studied placental development in N. ocellatus and confirmed that the chorioallantoic placenta lacks specializations found in species with a placentome. We also found that this species has a specialized omphaloplacenta. The chorioallantoic placenta is confined to the region adjacent to the embryo by a membrane, similar to that found in some other viviparous skinks, that divides the egg into embryonic and abembryonic hemispheres. We term this structure the \"inter-omphalopleuric\" membrane. The position of this membrane in N. ocellatus is closer to the embryonic pole of the egg than to the abembryonic pole and thus the surface area of the omphaloplacenta is greater than that of the chorioallantoic placenta. In addition, the omphaloplacenta is regionally diversified and more complex histologically than the chorioallantoic placenta. An impressive and unusual feature of the omphaloplacenta of N. ocellatus is the development of extensive overlapping folds in the embryonic component of mid-gestation embryos. The histological complexity and extensive folding of the omphaloplacenta make this a likely site of placental transfer of nutrients in this species. 相似文献
6.
Caudal autotomy, the ability to shed the tail, is common in lizards as a response to attempted predation. Since Arnold's substantial review of caudal autotomy as a defence in reptiles 20 years ago, our understanding of the costs associated with tail loss has increased dramatically. In this paper, we review the incidence of caudal autotomy among lizards (Reptilia Sauria) with particular reference to questions posed by Arnold. We examine tail break frequencies and factors that determine occurrence of autotomy in natural populations (including anatomical mechanisms, predation efficiency and intensity, microhabitat preference, sex and ontogenetic differences, as well as intraspecific aggression). We also summarize the costs associated with tail loss in terms of survivorship and reproduction, focusing on potential mechanisms that influence fitness (i.e. locomotion costs, behavioural responses and metabolic costs). Finally, we examine the factors that may influence the facility with which autotomy takes place, including regeneration rate, body form and adaptive behaviour. Taking Arnold's example, we conclude with proposals for future research. 相似文献
7.
8.
Juan D. Daza Aaron M. Bauer Eric Snively 《Zoological Journal of the Linnean Society》2013,167(3):430-448
Gobekko cretacicus, a Cretaceous lizard from the Gobi Desert of Mongolia, is a key fossil for understanding gecko phylogeny. We revisit this fossil using high‐resolution X‐ray computed tomography. The application of this imaging method reveals new information about sutures, bone shape, and structural details of the palate and basicranium. These data were used to assess the phylogenetic affinities of Gobekko in the context of an existing squamate data set. The effects of character ordering, search strategy, and the addition of another putative gekkonomorph (Hoburogekko suchanovi) on inferred gekkonomorph relationships were explored. Available specimens of G. cretacicus are skeletally mature but have unfused nasals, frontals, and parietals, and (possibly) a persistent basicranial fenestra. Some putative gekkonomorphs are not consistently supported as closer to crown clade gekkotans than to autarchoglossans. In a strict consensus both Gobekko and Hoburogekko form a polytomy with extant geckos. Some of the adult character states of Gobekko are observable in embryos of extant species. The evolution of tubular frontals and dentaries in gekkotans may be structurally related to the loss of the postorbital and supratemporal bars in this lineage. The complete lack of a parietal foramen, and presumably a light‐sensitive parietal eye, in this clade is of interest and could indicate an early origin of nocturnality in geckos. © 2013 The Linnean Society of London 相似文献
9.
S. V. Nielsen J. L. Banks R. E. Diaz Jr P. A. Trainor T. Gamble 《Journal of evolutionary biology》2018,31(4):484-490
Much of our current state of knowledge concerning sex chromosome evolution is based on a handful of ‘exceptional’ taxa with heteromorphic sex chromosomes. However, classifying the sex chromosome systems of additional species lacking easily identifiable, heteromorphic sex chromosomes is indispensable if we wish to fully understand the genesis, degeneration and turnover of vertebrate sex chromosomes. Squamate reptiles (lizards and snakes) are a potential model clade for studying sex chromosome evolution as they exhibit a suite of sex‐determining modes yet most species lack heteromorphic sex chromosomes. Only three (of 203) chameleon species have identified sex chromosome systems (all with female heterogamety, ZZ/ZW). This study uses a recently developed method to identify sex‐specific genetic markers from restriction site‐associated DNA sequence (RADseq) data, which enables the identification of sex chromosome systems in species lacking heteromorphic sex chromosomes. We used RADseq and subsequent PCR validation to identify an XX/XY sex chromosome system in the veiled chameleon (Chamaeleo calyptratus), revealing a novel transition in sex chromosome systems within the Chamaeleonidae. The sex‐specific genetic markers identified here will be essential in research focused on sex‐specific, comparative, functional and developmental evolutionary questions, further promoting C. calyptratus’ utility as an emerging model organism. 相似文献
10.
We examined caudal anatomy in two species of prehensile‐tailed lizards, Furcifer pardalis and Corucia zebrata. Although both species use their tails to grasp, each relies on a strikingly different anatomy to do so. The underlying anatomies appear to reflect phylogenetic constraints on the consequent functional mechanisms. Caudal autotomy is presumably the ancestral condition for lizards and is allowed by a complex system of interdigitating muscle segments. The immediate ancestor of chameleons was nonautotomous and did not possess this specialized anatomy; consequently, the derived arrangement in the chameleon tail is unique among lizards. The limb functions as an articulated linkage system with long tendinous bands originating from longitudinal muscles to directly manipulate vertebrae. Corucia is incapable of autotomy, but it is immediately derived from autotomous ancestors. As such, it has evolved a biomechanical system for prehension quite different from that of chameleons. The caudal anatomy in Corucia is very similar to that of lizards with autotomous tails, yet distinct differences in the ancestral pattern and its relationship to the subdermal tunic are derived. Instead of the functional unit being individual autotomy segments, the interdigitating prongs of muscle have become fused with an emphasis on longitudinal stacks of muscular cones. The muscles originate from the vertebral column and a subdermal collagenous tunic and insert within the adjacent cone. However, there is remarkably little direct connection with the bones. The muscles have origins more associated with the tunic and muscular septa. Like the axial musculature of some fish, the tail of Corucia utilizes a design in which these collagenous elements serve as an integral skeletal component. This arrangement provides Corucia with an elegantly designed system capable of a remarkable variety of bending movements not evident in chameleon tails. J. Morphol. 239:143–155, 1999. © 1999 Wiley‐Liss, Inc. 相似文献
11.
Natural habitat is not always available for translocations due to habitat modification or pressure from introduced predators. We followed the release of 30 captive-bred Otago skinks (Oligosoma otagense) into a 109?m2 outdoor enclosure of artificial habitat at Orokonui Ecosanctuary in southeastern New Zealand. We evaluated the short-term success of the translocation by assessing visibility and survival of the skinks over the 3 summer months following release in spring 2013, plus survival the following spring. Skinks were visible most days, especially in warm, dry conditions. Survival was high over the first summer; 80% of skinks were seen at least once during February 2014. The following spring 63% of skinks were resighted during three surveys and breeding has since been reported. Thus, it is feasible to maintain captive-bred adults of this Nationally Endangered skink in artificially constructed, outdoor habitat in a coastal location. However, to avoid predation of juveniles by adult skinks, future translocations should avoid releasing juveniles close to adults. 相似文献
12.
Jonathan B. Losos Kevin De Queiroz 《Biological journal of the Linnean Society. Linnean Society of London》1997,61(4):459-483
On the large islands of the Greater Antilles, multi-species communities of Anolis lizards are composed of species specialized to use particular habitats; similar sets of specialized species have evolved independently on each island. We studied species of anoles found on small Caribbean islands. Because these islands contain at most only one other species of anole, we predicted that species on these islands should not be as specialized as Greater Antillean species; rather, they might be expected to exhibit a generalized morphology and a greater breadth of habitat use. Our findings, however, do not confirm these predictions. Lesser Antillean species do not exhibit greater breadth of habitat use than Greater Antillean species, nor do they exhibit a generalized morphology. Most species are ecologically and morphologically similar to specialized trunk-crown anoles of the Greater Antilles, although some species exhibit morphologies unlike those seen in Greater Antillean species. Among descendants of specialized Greater Antillean species occurring on one-or two-species islands, most descendants of trunk-crown species have diverged relatively little, whereas several descendants of trunk-ground anoles have diverged considerably. Consequently, we propose that ancestral species in the Greater Antilles may have been trunk-crown anoles. 相似文献
13.
Little is known about the effects of different prey species on lizard growth. We conducted a 6‐week study to determine the relative effects of prey species on growth parameters of hatchling western fence lizards, Sceloporus occidentalis. Lizards were fed house cricket nymphs, Acheta domesticus, or mealworm larvae, Tenebrio molitor. The effects of prey species on growth were determined by measuring prey consumption, gross conversion efficiency of food [gain in mass (g)/food consumed (g)], gain in mass, and gain in snout–vent length. Lizards grew well on both the prey species. However, lizards that fed on crickets consumed a significantly higher percentage of their body mass per day than those fed mealworms. Nevertheless, lizards that consumed mealworms ingested significantly more metabolizable energy, had significantly higher food conversion efficiencies, significantly higher daily gains in mass, and significantly greater total growth in mass than lizards that fed on crickets. Zoo Biol 27:181–187, 2008. © 2008 Wiley‐Liss, Inc. 相似文献
14.
We describe the braincase of AMNH FR 21444, a gecko-like squamate from the Early Cretaceous of Mongolia, based on high-resolution X-ray computed tomography scans (CT scans) and incorporate it in a phylogenetic analysis of 36 squamate taxa scored for 226 morphological characters. Our analysis corroborates the Eublepharidae-Gekkonoidea split as the basal gekkotan dichotomy, but retrieves Teratoscincus as the sister-taxon to pygopodines + diplodactylines. The combination of plesiomorphic and apomorphic character states within AMNH FR 21444 demonstrates a decoupled evolutionary history between the braincase and the rest of the skull and mandible within gekkonomorph squamates. Enclosure of the lateral head vein and mandibular branch of the trigeminal nerve are both plesiomorphic for gekkonomorphs. The mechanisms responsible for the transition from the plesiomorphic skull roof of basal gekkonomorphs to the modern gekkotan condition cannot be anticipated given the current data. 相似文献
15.
Mike Letnic Bridget Roberts Mitchell Hodgson Alexandra K. Ross Santiago Cuartas Yingyod Lapwong Owen Price Nicola Sentinella Jonathan K. Webb 《Austral ecology》2023,48(7):1440-1453
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change. 相似文献
16.
The mitochondrial genome of the Komodo dragon (Varanus komodoensis) was nearly completely sequenced, except for two highly repetitive noncoding regions. An efficient sequencing method for squamate mitochondrial genomes was established by combining the long polymerase chain reaction (PCR) technology and a set of reptile-oriented primers designed for nested PCR amplifications. It was found that the mitochondrial genome had novel gene arrangements in which genes from NADH dehydrogenase subunit 6 to proline tRNA were extensively shuffled with duplicate control regions. These control regions had 99% sequence similarity over 700 bp. Although snake mitochondrial genomes are also known to possess duplicate control regions with nearly identical sequences, the location of the second control region suggested independent occurrence of the duplication on lineages leading to snakes and the Komodo dragon. Another feature of the mitochondrial genome of the Komodo dragon was the considerable number of tandem repeats, including sequences with a strong secondary structure, as a possible site for the slipped-strand mispairing in replication. These observations are consistent with hypotheses that tandem duplications via the slipped-strand mispairing may induce mitochondrial gene rearrangements and may serve to maintain similar copies of the control region. 相似文献
17.
Reisz RR Modesto SP Scott DM 《Proceedings. Biological sciences / The Royal Society》2011,278(1725):3731-3737
The initial stages of evolution of Diapsida (the large clade that includes not only snakes, lizards, crocodiles and birds, but also dinosaurs and numerous other extinct taxa) is clouded by an exceedingly poor Palaeozoic fossil record. Previous studies had indicated a 38 Myr gap between the first appearance of the oldest diapsid clade (Araeoscelidia), ca 304 million years ago (Ma), and that of its sister group in the Middle Permian (ca 266 Ma). Two new reptile skulls from the Richards Spur locality, Lower Permian of Oklahoma, represent a new diapsid reptile: Orovenator mayorum n. gen. et sp. A phylogenetic analysis identifies O. mayorum as the oldest and most basal member of the araeoscelidian sister group. As Richards Spur has recently been dated to 289 Ma, the new diapsid neatly spans the above gap by appearing 15 Myr after the origin of Diapsida. The presence of O. mayorum at Richards Spur, which records a diverse upland fauna, suggests that initial stages in the evolution of non-araeoscelidian diapsids may have been tied to upland environments. This hypothesis is consonant with the overall scant record for non-araeoscelidian diapsids during the Permian Period, when the well-known terrestrial vertebrate communities are preserved almost exclusively in lowland deltaic, flood plain and lacustrine sedimentary rocks. 相似文献
18.
A fundamental part of developing effective biodiversity conservation is to understand what factors affect the distribution and abundance of particular species. However, there is a paucity of data on ecological requirements and habitat relationships for many species, especially for groups such as reptiles. Furthermore, it is not clear whether habitat relationships for particular species in a given environment are transferable to other environments within their geographical range. This has implications for the type of ‘landscape model’ used to guide management decisions in different environments worldwide. To test the hypothesis that species‐specific habitat relationships are transferable to other environments, we present microhabitat models for five common lizard species from a poorly studied habitat – insular granite outcrops, and then compared these relationships with studies from other environments in south‐eastern Australia. We recorded twelve species from five families, representing 699 individuals, from 44 outcrops in the south‐west slopes of New South Wales. Five lizard species were abundant and accounted for 95% of all observations: Egernia striolata, Ctenotus robustus, Cryptoblepharus carnabyi, Morethia boulengeri and Carlia tetradactyla (Scincidae). Linear regression modelling revealed suites of different variables related to the abundance patterns of individual species, some of which were broadly congruent with those measured for each species in other environments. However, additional variables, particular to rocky environments, were found to relate to reptile abundance in this environment. This finding means that species' habitat relationships in one habitat may not be readily transferable to other environments, even those relatively close by. Based on these data, management decisions targeting reptile conservation in agricultural landscapes, which contain rocky outcrops, will be best guided by landscape models that not only recognize gradients in habitat suitability, but are also flexible enough to incorporate intraspecies habitat variability. 相似文献
19.
Daniel Escoriza 《Ecology and evolution》2021,11(21):14733
Mediterranean islands have a high diversity of squamates, although they are unevenly distributed. This variability in the composition of the reptile assemblages across islands may have been influenced by differences in the colonization abilities of these species. To evaluate the dispersal capacities of squamate species, we modeled their sea routes using cost surface models. We estimated the effects of some life‐history traits and the phylogenetic signal in the characteristics of the modeled dispersal paths. We hypothesized that a significant phylogenetic signal should be present if the dispersal ability is enhanced by traits shared among evolutionarily related species. The results showed that no phylogenetic signal was present in the characteristics of the dispersal paths (i.e., in the distance traveled/bypassed sea depth). Thus, no superior island‐colonizer lineages were detected in Mediterranean Squamata. However, our analyses also revealed that small‐sized lizards were superior to other groups of squamates at dispersing over long distances on the sea. 相似文献
20.
This study focuses on taxonomy of Uromastyx species. Morphologically, U. ocellata and U. ornata were identified and cytogenetically, 2n = 36 chromosome. 16S, cyt b and 12S genes fragmentamplification shows 597, 399 and 450 base pair respectively and more A-T than G-C base pair andmore A/C than T/G base contents. While, sequences blasting in GenBank, followed by construction of phylogenetic tree revealed, 16S and cry b sequences were similar to U. ocellata sequences, andclustered together in phylogenetic tree, in contrast, 12S sequences from same species were related tosubspecies U. ornata ornata sequences and clustered together in the phylogenetic tree. Therefore, the results of this study suggest more studies on Uromastyx species in Sudan. 相似文献