首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

2.
The Atlantic Forest biodiversity hotspot in eastern South America has been the focus of several phylogeographic studies concerning relationships between populations and areas and how taxa respond to environmental changes. We infer and compare the demographic and biogeographic histories of two didelphid marsupial species, Gracilinanus microtarsus and Marmosops incanus, from the Atlantic Forest of eastern Brazil to determine how these species responded to environmental changes over time, using mitochondrial and nuclear DNA sequences. We found great intraspecific genetic divergence in both species and a strong geographic structure related to similar and spatially cohesive groups within each species. These groups are consistent with the same topographical barriers, such as mountains and river valleys. Intraspecific clades are very old, dating back to a period of tectonic activities in the Neogene (5.39–8.57 Mya). Changes in the environment over the last 7 million years lead to fairly concordant demographic changes in both marsupial species, including population expansion during the last glacial maximum (ca. 21,000 years ago) or last interglacial (ca. 120,000 years ago) or both. These results do not fit the Pleistocene refuge hypothesis as an explanation of the historical biogeography and diversification of both species in the Atlantic Forest, but are compatible with the Atlantis Forest hypothesis.  相似文献   

3.
Current understanding of phylogeographical structure and genetic diversity of Siberian roe deer remains limited mainly due to small sample size and/or low geographical coverage in previous studies. Published data suggest at least two phylogroups: western (Ural Mountains and Western Siberia) and eastern (east from lake Baikal, including the Korean peninsula), but their phylogenetic relationship remains unclear. Combined sequences of cytochrome b (1140 bp) and the mtDNA control region (963 bp) were analyzed from 219 Siberian roe deer from 12 locations in Russia, Mongolia, and South Korea, which cover a large part of its range, to assess genetic diversity and phylogeographical status. Special emphasis was placed on the demographic history and genetic features of central, peripheral, and isolated populations. Results of median‐joining network and phylogenetic tree analyses indicate that Siberian roe deer from the Urals to the Pacific Ocean are genetically diverse and that geographical distribution and composition of haplogroups coincide with previously described ranges of the subspecies Capreolus pygargus pygargus and Capreolus pygargus tianschanicus. We found that peripheral populations in the northwestern parts of the species range (Urals), as well as the isolated population from Jeju Island, are genetically distinct from those in the core part of the range, both in terms of genetic diversity and quantitative composition of haplogroups. We also found that northwestern (Urals) and northern (Yakutia) peripheral populations share the same haplogroup and fall into the same phylogenetic clade with the isolated population from Jeju Island. This finding sheds light on the taxonomic status of the Jeju Island population and leads to hypotheses about the discordance of morphological and genetic evolution in isolated populations and specific genetic features of peripheral populations.  相似文献   

4.
Effective monitoring of native bee populations requires accurate estimates of population size and relative abundance among habitats. Current bee survey methods, such as netting or pan trapping, may be adequate for a variety of study objectives but are limited by a failure to account for imperfect detection. Biases due to imperfect detection could result in inaccurate abundance estimates or erroneous insights about the response of bees to different environments. To gauge the potential biases of currently employed survey methods, we compared abundance estimates of bumblebees (Bombus spp.) derived from hierarchical distance sampling models (HDS) to bumblebee counts collected from fixed‐area net surveys (“net counts”) and fixed‐width transect counts (“transect counts”) at 47 early‐successional forest patches in Pennsylvania. Our HDS models indicated that detection probabilities of Bombus spp. were imperfect and varied with survey‐ and site‐covariates. Despite being conspicuous, Bombus spp. were not reliably detected beyond 5 m. Habitat associations of Bombus spp. density were similar across methods, but the strength of association with shrub cover differed between HDS and net counts. Additionally, net counts suggested sites with more grass hosted higher Bombus spp. densities whereas HDS suggested that grass cover was associated with higher detection probability but not Bombus spp. density. Density estimates generated from net counts and transect counts were 80%–89% lower than estimates generated from distance sampling. Our findings suggest that distance modelling provides a reliable method to assess Bombus spp. density and habitat associations, while accounting for imperfect detection caused by distance from observer, vegetation structure, and survey covariates. However, detection/non‐detection data collected via point‐counts, line‐transects and distance sampling for Bombus spp. are unlikely to yield species‐specific density estimates unless individuals can be identified by sight, without capture. Our results will be useful for informing the design of monitoring programs for Bombus spp. and other pollinators.  相似文献   

5.
This study was a first analysis of paternal genetic diversity for extensive Asian domestic goats using SRY gene sequences. Sequencing comparison of the SRY 3′‐untranslated region among 210 Asian goats revealed four haplotypes (Y1A, Y1B, Y2A and Y2B) derived from four variable sites including a novel substitution detected in this study. In Asian goats, the predominant haplotype was Y1A (62%) and second most common was Y2B (30%). Interestingly, the Y2B was a unique East Asian Y chromosomal variant, which differentiates eastern and western Eurasian goats. The SRY geographic distribution in Myanmar and Cambodia indicated predominant the haplotype Y1A in plains areas and a high frequency of Y2B in mountain areas. The results suggest recent genetic infiltration of modern breeds into South‐East Asian goats and an ancestral SRY Y2B haplotype in Asian native goats.  相似文献   

6.
European honey bees Apis mellifera are important commercial pollinators that have suffered greater than normal overwintering losses since 2007 in North America and Europe. Contributing factors likely include a combination of parasites, pesticides, and poor nutrition. We examined diet diversity, diet nutritional quality, and pesticides in honey bee‐collected pollen from commercial colonies in the Canadian Maritime Provinces in spring and summer 2011. We sampled pollen collected by honey bees at colonies in four site types: apple orchards, blueberry fields, cranberry bogs, and fallow fields. Proportion of honey bee‐collected pollen from crop versus noncrop flowers was high in apple, very low in blueberry, and low in cranberry sites. Pollen nutritional value tended to be relatively good from apple and cranberry sites and poor from blueberry and fallow sites. Floral surveys ranked, from highest to lowest in diversity, fallow, cranberry, apple, and blueberry sites. Pesticide diversity in honey bee‐collected pollen was high from apple and blueberry sites and low from cranberry and fallow sites. Four different neonicotinoid pesticides were detected, but neither these nor any other pesticides were at or above LD50 levels. Pollen hazard quotients were highest in apple and blueberry sites and lowest in fallow sites. Pollen hazard quotients were also negatively correlated with the number of flower taxa detected in surveys. Results reveal differences among site types in diet diversity, diet quality, and pesticide exposure that are informative for improving honey bee and land agro‐ecosystem management.  相似文献   

7.
8.
The taxonomic status of many dolphin populations remains uncertain in poorly studied regions of the world's ocean. Here we attempt to clarify the phylogenetic identity of two distinct forms of bottlenose dolphins (Tursiops spp.) described in the Melanesian region of the Pacific Ocean. Mitochondrial DNA control region sequences from samples collected in New Caledonia (= 88) and the Solomon Islands (= 19) were compared to previously published sequences of Tursiops spp., representing four phylogenetic units currently recognized within the genus. Phylogenetic reconstructions confirm that the smaller coastal form in Melanesia belongs to the same phylogenetic unit as T. aduncus populations in the Pacific, but differs from T. aduncus in Africa, and that the larger more oceanic form belongs to the species T. truncatus. Analyses of population diversity reveal high levels of regional population structuring among the two forms, with contrasting levels of diversity. From a conservation perspective, genetic isolation of T. aduncus in the Solomon Islands raises further concern about recent impacts of the commercial, live‐capture export industry. Furthermore, the low level of mtDNA diversity in T. aduncus of New Caledonia suggests a recent population bottleneck or founder effect and isolation. This raises concerns for the conservation status of these local populations.  相似文献   

9.
Aim The goal of this paper is to examine the relationships between body size, biomic specialization and range size in the African large mammals, which are defined as all the African species corresponding to the orders Primates, Carnivora, Proboscidea, Perissodactyla, Hyracoidea, Tubulidentata, Artiodactyla and Pholidota. Location The study used the large mammal assemblage from Africa. Methods The degree of biomic specialization of African large mammals is investigated using the biomic specialization index (BSI) for each mammal species, based on the number of biomes it inhabits. Range size for each species is measured as the latitudinal extent of the geographical distribution of the species. We have analysed our data using both conventional cross‐species analyses and phylogenetically independent contrasts. Results There is a polygonal relationship between species biomic specialization and body size. While small and large species are biomic specialists, medium‐sized species are distributed along the whole range of biomic specialization. The latitudinal extent–body size relationship is approximately triangular. Small‐bodied species may have either large or small ranges, whereas large‐bodied ones have only large ranges. A positive correlation between latitudinal extent and biomic specialization is evident, although their relationship is better described as triangular. Main conclusions We found a polygonal relationship between species biomic specialization and body size, which agrees with previous arguments that small‐bodied species have more limited dispersal and, therefore, they may come to occupy a lesser proportion of their potential inhabitable biomes. On the other hand, large‐bodied species are constrained to inhabit biomes with a high productivity. A polygonal relationship between species latitudinal extent and body size in African large mammals agrees with previous studies of the relationship between range size and body size in other continents. The independent study of the macroecological pattern in biomic specialization highlights different factors that influence the body size–range size relationship. Although body size is usually implicated as a correlate of both specialization and geographical range size in large mammals, much of the variation in these variables cannot be attributed to size differences but to biome specific factors such as productivity, area, history, etc.  相似文献   

10.
11.
12.
The oriental armyworm, Mythimna separata, is a serious agricultural pest in China. Seasonal and roundtrip migration has recently led to sudden, localized outbreaks and crop losses. To evaluate genetic differentiation between populations in eastern and western China and elucidate gene flow, the genetic structure of 20 natural populations from nine provinces was examined using seven microsatellite markers. The results indicated high genetic diversity. However, little to moderate (0 < FST < 0.15) genetic differentiation was detected, and there was no correlation between genetic distance and geographical distance. Bayesian clustering analysis identified three groups whereas discriminant analysis of principal components identified ten clusters that were considered as two clear‐cut clusters and one admixed group. Gene flow occurred frequently in most population pairs, and an asymmetrical migration rate was detected in several pairwise population comparisons. The bottleneck test showed that few populations had experienced recent bottlenecks. Correspondingly, large‐scale and long‐distance migration of M. separata has caused low genetic differentiation and frequent gene exchange. Our findings are important for studying genetic evolution and help to improve predictions of M. separata outbreaks in China.  相似文献   

13.
Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators.  相似文献   

14.
15.
Next‐generation sequencing technologies permit rapid and cost‐effective identification of numerous putative microsatellite loci. Here, from the genome sequences of Japanese quail, we developed microsatellite markers containing dinucleotide repeats and employed these for characterisation of genetic diversity and population structure. A total of 385 individuals from 12 experimental and one wild‐derived Japanese quail lines were genotyped with newly developed autosomal markers. The maximum number of alleles, expected heterozygosity and polymorphic information content (PIC) per locus were 10, 0.80 and 0.77 respectively. Approximately half of the markers were highly informative (PIC ≥ 0.50). The mean number of alleles per locus and observed heterozygosity within a line were in the range of 1.3–4.1 and 0.11–0.53 respectively. Compared with the wild‐derived line, genetic diversity levels were low in the experimental lines. Genetic differentiation (FST) between all pairs of the lines ranged from 0.13 to 0.83. Genetic clustering analyses based on multilocus genotypes of individuals showed that most individuals formed clearly defined clusters corresponding to the origins of the lines. These results suggest that Japanese quail experimental lines are highly structured. Microsatellite markers developed in this study may be effective for future genetic studies of Japanese quail.  相似文献   

16.
Gynostemma pentaphyllum, a member of family Cucurbitaceae, is a perennial creeping herb used as a traditional medicinal plant in China. In this study, six polymorphic nSSR and four EST‐SSR primers were used to genotype 1,020 individuals in 72 wild populations of G. pentaphyllum. The genetic diversity and population structure were investigated, and ecological niche modeling was performed to reveal the evolution and demographic history of its natural populations. The results show that G. pentaphyllum has a low level of genetic diversity and high level of variation among populations because of pervasive asexual propagation, genetic drift, and long‐term habitat isolation. Results of the Mantel test demonstrate that the genetic distance and geographic distance are significantly correlated among G. pentaphyllum natural populations. The populations can be divided into two clusters on the basis of genetic structure. Asymmetrical patterns of historical gene flow were observed among the clusters. For the contemporary, almost all the bidirectional gene flow of the related pairs was symmetrical with slight differences. Recent bottlenecks were experienced by 34.72% of the studied populations. The geographic range of G. pentaphyllum continues to expand northward and eastward from Hengduan Mountains. The present distribution of G. pentaphyllum is a consequence of its complex evolution. Polyploidy in G. pentaphyllum is inferred to be polygenetic. Finally, G. pentaphyllum is a species in need of protection, so in situ and ex situ measures should be considered in the future.  相似文献   

17.
Tobacco blue mold, caused by Peronospora tabacina, is an oomycete plant pathogen that causes yearly epidemics in tobacco (Nicotiana tabacum) in the United States and Europe. The genetic structure of P. tabacina was examined to understand genetic diversity, population structure and patterns of migration. Two nuclear loci, Igs2 and Ypt1, and one mitochondrial locus, cox2, were amplified, cloned and sequenced from fifty‐four isolates of P. tabacina from the United States, Central America–Caribbean–Mexico (CCAM), Europe and the Middle East (EULE). Cloned sequences from the three genes showed high genetic variability across all populations. Nucleotide diversity and the population mean mutation parameter per site (Watterson's theta) were higher in EULE and CCAM and lower in U.S. populations. Neutrality tests were significant and the equilibrium model of neutral evolution was rejected, indicating an excess of recent mutations or rare alleles. Hudson's Snn tests were performed to examine population subdivision and gene flow among populations. An isolation‐with‐migration analysis (IM) supported the hypothesis of long‐distance migration of P. tabacina from the Caribbean region, Florida and Texas into other states in the United States. Within the European populations, the model documented migration from North Central Europe into western Europe and Lebanon, and migration from western Europe into Lebanon. The migration patterns observed support historical observations about the first disease introductions and movement in Europe. The models developed are applicable to other aerial dispersed emerging pathogens and document that high‐evolutionary‐risk plant pathogens can move over long distances to cause disease due to their large effective population size, population expansion and dispersal.  相似文献   

18.
Genetic diversity is crucial for long‐term population persistence. Population loss and subsequent reduction in migration rate among the most important processes that are expected to lead to a reduction in genetic diversity and an increase in genetic differentiation. While the theory behind this is well‐developed, empirical evidence from wild populations is inconsistent. Using microsatellite markers, we compared the genetic structure of populations of an amphibian species, the midwife toad (Alytes obstetricans), in four Swiss regions where the species has suffered variable levels of subpopulation extirpation. We also quantified the effects of several geographic factors on genetic structure and used a model selection approach to ascertain which of the variables were important for explaining genetic variation. Although subpopulation pairwise FST‐values were highly significant even over small geographic scales, neither any of the geographic variables nor loss of subpopulations were important factors for predicting spatial genetic structure. The absence of a signature of subpopulation loss on genetic differentiation may suggest that midwife toad subpopulations function as relatively independent units.  相似文献   

19.
Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site‐associated DNA sequencing (RADseq) in two bumble bee species, Bombus vosnesenskii and Bombus bifarius, across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A. Bombus vosnesenskii, which occurs across a broader elevational range at most latitudes, exhibits little population structure while B. bifarius, which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, with B. vosnesenskii exhibiting relatively consistent levels of genetic diversity across its range, while B. bifarius has reduced genetic diversity at low latitudes, where it is restricted to high‐elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems.  相似文献   

20.
Miscanthus lutarioriparius is an endemic species that grows along the middle and lower reaches of the Yangtze River and is a valuable source of germplasm for the development of second‐generation energy crops. The plant that propagates via seeds, stem nodes, and rhizomes shows high phenotypic variation and strong local adaptation. Here, we examined the magnitude and spatial distribution of genetic variation in M. lutarioriparius across its entire distributional range and tested underlying factors that shaped its genetic variation. Population genetic analyses were conducted on 644 individuals from 25 populations using 16 microsatellite markers. M. lutarioriparius exhibited a high level of genetic variation (HE = 0.682–0.786; A= 4.74–8.06) and a low differentiation (FST = 0.063; Dest = 0.153). Of the total genetic variation, 10% was attributed to the differences among populations (df = 24, < 0.0001), whereas 90% was attributed to the differences among individuals (df = 619, ≤ 0.0001). Genetic diversity did not differ significantly across longitudes and did not increase in the populations growing downstream of the Yangtze River. However, significant associations were found between genetic differentiation and spatial distance. Six genetic discontinuities were identified, which mostly distributed among downstream populations. We conclude that anthropogenic factors and landscape features both contributed to shaping the pattern of gene flow in M. lutarioriparius, including long‐distance bidirectional dispersal. Our results explain the genetic basis of the high degree of adaptability in M. lutarioriparius and identify potential sources of new germplasm for the domestication of this potential second‐generation energy crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号