首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim Determine the phylogeny and dispersal patterns of the cicada genus Kikihia in New Zealand and the origin of the Norfolk, Kermadec, and Chatham Island cicadas. Location New Zealand, Norfolk Island, Kermadec Islands and Chatham Island. Methods DNA sequences from 16 species and four soon to be described species of cicadas from New Zealand and Norfolk Island (Australia) were examined. A total of 1401 base pairs were analysed from whole genome extraction of three mitochondrial genes (cytochrome oxidase subunit II, ATPase6 and ATPase8). These DNA sequences were aligned and analysed using standard likelihood approaches to phylogenetic analysis. Dates of divergences between clades were determined using a molecular clock based on Bayesian statistics. Results Most species in the genus Kikihia diverged between 3 and 5 million years ago (Ma) coincident with a period of rapid mountain building in New Zealand. Cicada species on the Kermadec and Norfolk Islands invaded recently from New Zealand and are closely related to the New Zealand North Island species Kikihia cutora. Main conclusions Speciation in the genus Kikihia was likely due in large part to the appearance of new habitats associated with the rise of the Southern Alps, starting c. 5 Ma. Dispersal of Kikihia species within mainland New Zealand probably occurred gradually rather than through long‐distance jumps. However, invasion of Norfolk, the Kermadecs and Chatham Islands had to have occurred through long‐distance dispersal.  相似文献   

2.
This paper provides a panbiogeographical analysis of the endemic plant families and the palms of New Caledonia. There are three endemic plant families in New Caledonia and several genera that were previously recognized as endemic families. Of these taxa, some are sister to widespread Northern Hemisphere or global groups (Canacomyrica, Austrotaxus, Amborella). The others belong to trans‐Indian Ocean groups (Strasburgeria), trans‐tropical Pacific groups (Oncotheca) or Tasman Sea/Coral Sea groups (Phelline, Paracryphia) that are sister to widespread Northern Hemisphere or global groups. In palms, the four clades show allopatric regional connections in, respectively: (1) western Indonesia, Malaysia and Thailand; (2) Vanuatu/Fiji and the southern Ryukyu Islands near Taiwan; (3) the western Tasman/Coral Sea (eastern Australia, New Guinea and the Solomon Islands); and (4) the eastern Tasman/Coral Sea (Lord Howe and Norfolk Islands, New Zealand, Vanuatu, Fiji and the Solomon Islands). The four clades thus belong to different centres of endemism that overlap in New Caledonia. The patterns are attributed not to chance dispersal and adaptive radiation but to the different histories of the eight terranes that fused to produce modern New Caledonia. Trans‐tropical Pacific connections can be related to the Cretaceous igneous plateaus that formed in the central Pacific and were carried, with plate movement, west to the Solomon Islands and New Zealand, and east to Colombia and the Caribbean.  相似文献   

3.
Abrotanella is the basal genus in the large tribe Senecioneae (Asteraceae) and has a disjunct distribution in Australasia and South America. A recent molecular phylogeny of the genus was used to investigate whether the main biogeographical patterns in the group could be related to the region's tectonic history in a coherent way. The phylogenetic/biogeographical breaks and overlaps in the genus imply a series of vicariance and range expansion events. Each of these can be related to one of the main tectonic events in the region, including assembly of the New Zealand terranes, crustal extension, and magmatism in Gondwana that preceded seafloor spreading, opening of the Tasman and Pacific basins, and transcurrent movement on the New Zealand Alpine fault. The coincident sequence indicates that pre‐drift tectonics and magmatism have been more important for the origin of trans‐Tasman and trans‐Pacific groups than the final rifting of Gondwana that led to their disjunction. For example, during the pre‐drift phase of break‐up, the Whitsunday volcanic province of Australia and the Median Batholith of New Zealand formed a large, active igneous belt. Its distribution is aligned with the break between New Zealand–south‐eastern Australia clades, and New Zealand–New Guinea clades. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

4.
Aim and location New Zealand began to separate from Gondwana c. 85 Ma, and has been isolated from the nearest large landmass, Australia, by some 2000 km of the Tasman Sea since c. 60 Ma. Given New Zealand's long geographical isolation, there has been considerable interest in explaining the origins of its different biotic elements. Here we investigate the biogeography of the fern genus Polystichum from temperate Australasia. Six species are found in New Zealand, four in Australia, and two on Lord Howe Island. Methods The evolutionary relationships between the twelve Polystichum species found in temperate Australasia were inferred from phylogenetic analyses of two molecular data sets: DNA sequence from the chloroplast rps4–trnS spacer locus; and AFLP DNA‐fingerprinting. The timing of the separation between Australian and New Zealand Polystichum was estimated by using the fossil record to temporally calibrate the rbcL sequence differentiation between representative species from these regions. Results Species of Polystichum from New Zealand appear to comprise a monophyletic group. This suggests that Polystichum crossed the Tasman only once. Temporal calibration of the rbcL sequence differentiation between Australian and New Zealand Polystichum indicates that a vicariant explanation for their separation can be rejected in favour of trans‐oceanic dispersal. Main conclusions The extant diversity within New Zealand Polystichum appears to have been derived from a single, trans‐oceanic dispersal event (within the last c. 20 Myr), followed by a relatively extensive in situ ecological radiation.  相似文献   

5.
Abstract

Blue penguins, Eudyptula minor, breeding on Penguin Island, Western Australia are considerably larger than other blue penguins in Australia. If genetic isolation is the cause, it may have implications for the conservation status of some blue penguin populations. We compared the sequences of two mitochondrial gene regions (cytochrome‐b and the control region) from Western Australian blue penguins with other populations of blue penguins from Australia and New Zealand. We found few differences between sequences from Western Australia, Phillip Island, Victoria and Otago, New Zealand, although all three differed considerably from other New Zealand blue penguins. Sequences for the control region from the Western Australian blue penguins and 30 more birds breeding at various Australasian sites provided further support for two major clades within Eudyptula; an Australian clade (including Otago) and a New Zealand clade.  相似文献   

6.
New technologies enable tracking of the route, duration, and destination of previously unassessed long-distance movements. Fledgling Australasian Gannets Morus serrator from breeding populations in New Zealand had been reported to fly across the Tasman Sea to Australia, with this historic knowledge derived from the recovery of banded carcasses and from observations of initial flight direction. We deployed Argos satellite devices on ten M. serrator fledglings at Cape Kidnappers Gannetry, North Island, New Zealand, across 2 years. Birds that were tracked leaving the colony initially appeared to have landed on the sea. A male bird and two female birds were tracked moving along the east coast to the south tip of New Zealand. The two females then crossed the Tasman Sea to eastern Australian coastal waters in 4 and 5 days, respectively. We suggest that, contrary to historic reports, the route via Stewart Island constitutes a realized migration path for fledglings from Cape Kidnappers, which might minimize the distance traveled across the open sea to southeastern Australia or Tasmania. Our results further imply that initial direction of flight needs not be indicative of the subsequent migration route taken by M. serrator. This highlights the importance of direct tracking technology for adequate assessment of dispersal and migration in seabirds and other highly mobile species.  相似文献   

7.
A phylogeny of Dianella is presented based on Bayesian and maximum parsimony analyses of a combined molecular data set using three chloroplast markers (trnQUUG–5'rps16, 3'rps16–5'trnK(UUU) and rpl14–rps8–infA–rpl36) and two nuclear markers (ITS and ETS). Accessions included most Dianella species, including all species from Australia, the centre of diversity for the genus, and related outgroup genera Eccremis, Stypandra, Thelionema and Herpolirion. The phylogeny showed Stypandra sister to Herpolirion + Thelionema, and confirmed the monophyly of Dianella. Within Dianella, a number of clades were resolved that revealed biogeographic relationships. Accessions from south-western Australia (extending into South Australia) formed the earliest diverging clade, followed by D. serrulata from New Guinea, sister to all other clades of Dianella from Australia and other regions. Tropical North Queensland species, including the D. pavopennacea complex, were related to a clade of accessions from New Caledonia and the Hawaiian Islands in the Pacific, and a clade that included samples of D. carolinensis (Caroline Islands) and the widespread D. ensifolia from South-East Asia and across the Indian Ocean to Mauritius and Madagascar. However, D. ensifolia is not monophyletic, with accessions from Japan and Taiwan related to a clade of Queensland samples that are part of the D. revoluta complex. Three New Zealand species (diploid, 2n?=?16) were found to be related to Norfolk Island D. intermedia (type locality; octoploid, 2n?=?64). In contrast ‘D. intermedia’ from Lord Howe Island was resolved as sister to the eastern Australian D. caerulea complex. The phylogenetic results indicate the need for taxonomic revision, particularly revision of the species ‘complexes’ D. longifolia and D. caerulea in Australia, and recognition of more than one species within D. ensifolia and within D. sandwicensis on the Hawaiian Islands.  相似文献   

8.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

9.
Orthoglymma Liebherr, Marris, Emberson, Syrett & Roig‐Juñent gen.n. (Coleoptera: Carabidae: Broscini) is described to accommodate the single type species Orthoglymma wangapeka Liebherr, Marris, Emberson, Syrett & Roig‐Juñent sp.n., known from the Wangapeka Track, Kahurangi National Park, north‐western South Island, New Zealand. Orthoglymma wangapeka sp.n. is analysed cladistically along with a comprehensive array of 42 other broscine generic terminals and four out‐group taxa, using information obtained from 73 morphological characters, and placed as adelphotaxon to the remainder of subtribe Nothobroscina, a clade distributed in New Zealand, southern South America and Australia. Based on fossil evidence for Carabidae, the occurrence of Orthoglymma wangapeka sp.n. on the Buller Terrane, a geological feature once situated on the eastern margin of Gondwana, and early cladistic divergence of Orthoglymma from the remaining Nothobroscina, Orthoglymma wangapeka sp.n. is interpreted as a Gondwanan relict. The New Zealand arthropod fauna is reviewed to identify other taxa in existence at the time of Cretaceous vicariance of New Zealand and Australia. These candidate Gondwanan taxa, all of which are specified using fossil data or molecular divergence‐based estimates, are analysed biogeographically. Where phylogenetic hypotheses are available, primordial distributions are optimized using event‐based, dispersal‐vicariance (DIVA) analysis. The hypothesized Gondwanan‐aged taxa demonstrate inordinate fidelity to the Gondwanan‐aged geological terranes that constitute the western portions of New Zealand, especially in the South Island. Persistence of these relicts through a hypothesized ‘Oligocene drowning’ event is the most parsimonious explanation for the concentration of Gondwanan relicts in the Nelson, Buller and Fiordland districts of the South Island. Geographic patterns of Gondwanan‐aged taxa are compared with distributions of taxa hypothesized to have colonized New Zealand across the Tasman Sea from Australia and New Caledonia, subsequent to Cretaceous vicariance. These post‐Gondwanan taxa exhibit very different patterns of distribution and diversification in New Zealand, including: (i) abundant endemism in Northland, and the islands and peninsulas of the North Island; (ii) species geographically restricted to areas underlain by the youngest Rakaia and Pahau geological terranes; and (iii) species exhibiting exceedingly widespread geographic distributions spanning geological terranes of disparate ages.
相似文献   

10.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

11.
We present the first phylogenomic analysis of relationships among all ten families of Liliales, based on 75 plastid genes from 35 species in 29 genera, and 97 additional plastomes stratified across angiosperm lineages. We used a supermatrix approach to extend our analysis to 58 of 64 genera of Liliales, and calibrated the resulting phylogeny against 17 fossil dates to produce a new timeline for monocot evolution. Liliales diverged from other monocots 124 Mya and began splitting into separate families 113 Mya. Our data support an Australian origin for Liliales, with close relationships between three pairs of lineages (Corsiaceae/Campynemataceae, Philesiaceae/Ripogonaceae, tribes Alstroemerieae/Luzuriageae) in South America and Australia or New Zealand reflecting teleconnections of these areas via Antarctica. Long‐distance dispersal (LDD) across the Pacific and Tasman Sea led to re‐invasion of New Zealand by two lineages (Luzuriaga, Ripogonum); LDD allowed Campynemanthe to colonize New Caledonia after its submergence until 37 Mya. LDD permitted Colchicaceae to invade East Asia and Africa from Australia, and re‐invade Africa from Australia. Periodic desert greening permitted Gloriosa and Iphigenia to colonize Southeast Asia overland from Africa, and Androcymbium–Colchicum to invade the Mediterranean from South Africa. Melanthiaceae and Liliaceae crossed the Bering land‐bridge several times from the Miocene to the Pleistocene.  相似文献   

12.
Abstract

The first records of Sitona discoideus and Trifolium repens on Norfolk Island are reported. The identities of both species were confirmed using morphological criteria and nucleotide sequences. Sequence data from the mitochondrial gene cytochrome oxidase subunit 1 of the Norfolk Island S. discoideus specimens were compared with 33 specimens from Australia, New Zealand and France. These data represent the first published sequences for S. discoideus, and suggest that Australia or New Zealand was the source of Norfolk Island's population. The implications of the introduction of S. discoideus to Norfolk Island are discussed.  相似文献   

13.
Aim  To infer the most plausible explanations for the presence of 14 species of the Neotropical cucurbit genus Sicyos on the Hawaiian Islands, two on the Galápagos Islands, two in Australia, and one in New Zealand. Location  Neotropics, the Hawaiian and Galápagos archipelagos, Australia and New Zealand. Methods  We tested long‐problematic generic boundaries in the tribe Sicyoeae and reconstructed the history of Sicyos using plastid and nuclear DNA sequences from 87 species (many with multiple accessions) representing the group’s generic and geographic diversity. Maximum likelihood and Bayesian approaches were used to infer relationships, divergence times, biogeographic history and ancestral traits. Results  Thirteen smaller genera, including Sechium, are embedded in Sicyos, which when re‐circumscribed as a monophyletic group comprises 75 species. The 14 Hawaiian species of Sicyos descended from a single ancestor that arrived c. 3 million years ago (Ma), Galápagos was reached twice at c. 4.5 and 1 Ma, the species in Australia descended from a Neotropical ancestor (c. 2 Ma), and New Zealand was reached from Australia. Time since arrival thus does not correlate with Sicyos species numbers on the two archipelagos. Main conclusions  A plausible mechanism for the four trans‐Pacific dispersal events is adherence to birds of the tiny hard fruit with retrorsely barbed spines found in those lineages that underwent long‐distance migrations. The Hawaiian clade has lost these spines, resulting in a lower dispersal ability compared with the Galápagos and Australian lineages, and perhaps favouring allopatric speciation.  相似文献   

14.
Abstract Two alternative hypotheses for the origin of butterflies in the Australian Region, that elements dispersed relatively recently from the Oriental Region into Australia (northern dispersal hypothesis) or descended from ancient stocks in Gondwana (southern vicariance hypothesis), were tested using methods of cladistic vicariance biogeography for the Delias group, a diverse and widespread clade in the Indo‐Australian Region. A phylogenetic hypothesis of the twenty‐four species‐groups recognized currently in Delias and its sister genus Leuciacria is inferred from molecular characters generated from the nuclear gene elongation factor‐1 alpha (EF‐1α) and the mitochondrial genes cytochrome oxidase subunits I and II (COI/COII) and NADH dehydrogenase 5 (ND5). Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined dataset (3888 bp, 1014 parsimony informative characters) confirmed the monophyly of Delias and recovered eight major lineages within the genus, informally designated the singhapura, belladonna, hyparete, chrysomelaena, eichhorni, cuningputi, belisama and nigrina clades. Species‐group relationships within these clades are, in general, concordant with current systematic arrangements based on morphology. The major discrepancies concern the placement of the aganippe, belisama and chrysomelaena groups, as well as several species‐groups endemic to mainland New Guinea. Two species (D. harpalyce (Donovan), D. messalina Arora) of uncertain group status are currently misplaced based on strong evidence of paraphyly, and are accordingly transferred to the nigrina and kummeri groups, respectively. Based on this phylogeny, a revised systematic classification is presented at the species‐group level. An historical biogeographical analysis of the Delias group revealed that the most parsimonious reconstruction is an origin in the Australian Region, with at least seven dispersal events across Wallacea to the Oriental Region. The eight major clades of Delias appear to have diverged rapidly following complete separation of the Australian plate from Gondwana and its collision with the Asian plate in the late Oligocene. Further diversification and dispersal of Delias in the Miocene–Pliocene are associated with major geological and climatic changes that occurred in Australia–New Guinea during the late Tertiary. The ‘out‐of‐Australia’ hypothesis for the Delias group supports an origin of the Aporiina in southern Gondwana (southern vicariance hypothesis), which proposes that the ancestor of Delias + Leuciacria differentiated vicariantly on the Australian plate.  相似文献   

15.
Aim To discover the pattern of relationships of areas of endemism for Australian genera in the plant family Rhamnaceae tribe Pomaderreae for comparison with other taxa and interpretation of biogeographical history. Location Australian mainland, Tasmania and New Zealand. Methods A molecular phylogeny and geographic distribution of species within four clades of Pomaderreae are used as a basis for recognition of areas of endemism and analysis of area relationships using paralogy‐free subtrees. The taxon phylogeny is the strict consensus tree from a parsimony analysis of 54 taxa, in four clades, and sequence data for the internal transcribed spacer regions of ribosomal DNA (ITS1‐5.8S‐ITS2) and the plastid DNA region trnL‐F. Results The biogeographical analysis identified five subtrees, which, after parsimony analysis, resulted in a minimal tree with 100% consistency and seven resolved nodes. Three sets of area relationships were identified: the areas of Arnhem and Kimberley in tropical north Australia are related based on the phylogeny of taxa within Cryptandra; the moister South‐west of Western Australia, its sister area the coastal Geraldton Sandplains, the semi‐arid Interzone region and arid Western Desert are related, based on taxa within Cryptandra, Spyridium, Trymalium and Pomaderris; and the eastern regions of Queensland, McPherson‐Macleay, south‐eastern New South Wales (NSW), Victoria, southern Australia, Tasmania and New Zealand are related based on Cryptandra, Pomaderris and Spyridium. Tasmania and NSW are related based entirely on Cryptandra, but the position of New Zealand relative to the other south‐eastern Australian regions is unresolved. Main conclusions The method of paralogy‐free subtrees identified a general pattern of geographic area relationships based on Australian Pomaderreae. The widespread distribution of clades, the high level of endemicity and the age of fossils for the family, suggest that the Pomaderreae are an old group among the Australian flora. Their biogeographical history may date to the early Palaeogene with subsequent changes through to the Pleistocene.  相似文献   

16.
The phylogenetic relationships among populations of seaperch, Helicolenus spp., in the south-west Pacific were examined with mtDNA markers. Parts of the cytochrome b gene [459 base pair (bp)] and the control region (448 bp) were sequenced in 58 specimens from the south-west Pacific and four specimens of Helicolenus lengerichi from Chile. Only one clade was recognized in New Zealand coastal waters, despite a wide range of colour morphs. This clade also occurred in the mid Tasman Sea on the Norfolk Ridge and around Tasmania and Victoria. A second sympatric clade was identified around Tasmania and Victoria and to the west of New Zealand. A third allopatric clade was identified to the north of New Zealand and in deep water on the Chatham Rise and a fourth clade on the Foundation Seamounts and the Louisville Ridge. Helicolenus lengerichi from Chile formed a fifth clade. Assuming a molecular clock, the clades were estimated to have diverged c. 0·7–2·6 million years ago. Only two clades, around Tasmania and Victoria, were separated using morphology, colour (in live) and dorsal-fin soft ray counts and were confirmed as Helicolenus percoides and Helicolenus barathri . Two characters, orbit diameter and colour variation, previously used to identify two species in New Zealand waters were unreliable characters for species discrimination. Principle component analyses of 11 morphological measures from 67 individuals did not delineate the clades. A canonical discriminant analysis was able to separate four of the five clades, but mean discriminate probabilities were low (77·6%), except for the five Chilean specimens of H. lengerichi (100%).  相似文献   

17.
Aim The New Zealand avifauna includes lineages that lack close relatives elsewhere and have low diversity, characteristics sometimes ascribed to long geographic isolation. However, extinction at the population and species levels could yield the same pattern. A prominent example is the ecologically important pigeon genus Hemiphaga. In this study, we examined the population structure and phylogeography of Hemiphaga across islands in the region. Location New Zealand, Chatham Islands and Norfolk Island. Methods Mitochondrial DNA was sequenced for all species of the genus Hemiphaga. Sixty‐seven individuals from mainland New Zealand (Hemiphaga novaeseelandiae novaeseelandiae), six of the Chatham Islands sister species (Hemiphaga chathamensis), and three of the extinct Norfolk Island subspecies (Hemiphaga novaeseelandiae spadicea) were included in this study. Novel D‐loop and cytochrome b primers were designed to amplify DNA from museum samples. Additionally, five other mitochondrial genes were used to examine placement of the phylogenetic root. Results Analyses of mitochondrial DNA sequences revealed three Hemiphaga clades, consistent with the allopatric populations of recognized (sub)species on oceanic islands. Of the 23 D‐loop haplotypes among 67 New Zealand pigeons (Hemiphaga n. novaeseelandiae), 19 haplotypes were singletons and one haplotype was common and widespread. Population genetic diversity was shallow within and between New Zealand populations, indicating range expansion with high inter‐population exchange. Tentative rooting of the Hemiphaga clade with cyt b data indicates exchange between mainland New Zealand and the Chatham Islands prior to colonization of Norfolk Island. We found low genetic divergence between populations on New Zealand, the Chatham Islands and Norfolk Island, but deep phylogenetic divergence from the closest living relatives of Hemiphaga. Main conclusions The data are consistent with the hypothesis of population reduction during the Pleistocene and subsequent expansion from forest refugia. Observed mobility of Hemiphaga when feeding helps explain the shallow diversity among populations on islands separated by many hundreds of kilometres of ocean. Together with comparison of distribution patterns observed among birds of the New Zealand region, these data suggest that endemicity might represent not long occupancy of an area, but descent from geologically recent colonizations. We consider the role of lineage pruning in creating the impression of old endemicity.  相似文献   

18.
Lagenophora (Astereae, Asteraceae) has 14 species in New Zealand, Australia, Asia, southern South America, Gough Island and Tristan da Cunha. Phylogenetic relationships in Lagenophora were inferred using nuclear and plastid DNA regions. Reconstruction of spatio‐temporal evolution was estimated using parsimony, Bayesian inference and likelihood methods, a Bayesian relaxed molecular clock and ancestral area and habitat reconstructions. Our results support a narrow taxonomic concept of Lagenophora including only a core group of species with one clade diversifying in New Zealand and another in South America. The split between the New Zealand and South American Lagenophora dates from 11.2 Mya [6.1–17.4 95% highest posterior density (HPD)]. The inferred ancestral habitats were openings in beech forest and subalpine tussockland. The biogeographical analyses infer a complex ancestral area for Lagenophora involving New Zealand and southern South America. Thus, the estimated divergence times and biogeographical reconstructions provide circumstantial evidence that Antarctica may have served as a corridor for migration until the expansion of the continental ice during the late Cenozoic. The extant distribution of Lagenophora reflects a complex history that could also have involved direct long‐distance dispersal across southern oceans. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 78–95.  相似文献   

19.
Abstract

The distribution and movements of Buller's albatross in Australasian seas are analysed using results of shipborne surveys (13 238 10‐min counts), counts from trawlers, banding data, recoveries on beaches and fishing vessels, and records from the literature. Patterns of marine distribution are documented by monthly accounts and maps. During the breeding season, highest abundances are recorded over shelves and slopes off southern New Zealand (The Snares shelf to 41–43°S off the South Island, D. b. bulleri), around the Chatham Islands and over oceanic subtropical waters east of New Zealand (probably D. b. platei), with marked seasonal variations observed off southern New Zealand. Both subspecies disperse mostly outside Australasian waters during the non‐breeding season. Birds banded on The Snares were recovered off south‐eastern New Zealand (Stewart Island to Cook Strait) and in the eastern tropical Pacific. Immatures accounted for only 0.25% of birds censused during the ship‐borne surveys; they are recorded around the New Zealand mainland in August‐October and February‐May, off south‐eastern Australia and in the Tasman Sea in November‐December, February, and June‐July. Around New Zealand, males predominate among birds recovered along the eastern seaboard, whereas the sex ratio in south‐western waters tends to vary according to water depth and season. Distribution patterns and movements in New Zealand and Australian seas are discussed in relation to breeding events and breeding status.  相似文献   

20.
Abstract Phylogeographical disjunctions in high-dispersal marine taxa are variously ascribed to palaeogeographical conditions or contemporary ecological factors. Associated biogeographical studies, however, seldom incorporate the sampling design required to confidently discriminate among such competing hypotheses. In the current study, over 7800 gastropod specimens were examined for operculum colour, and 129 specimens genetically, to test ecological and historical biogeographical hypotheses relating to biogeographical disjunction in the Southern Hemisphere, and to southern Australia in particular. Mitochondrial DNA sequence analysis of the high-dispersal intertidal gastropod Nerita atramentosa in southern Australia (88 specimens; 18 localities) revealed an east-west phylogeographical split involving two highly divergent clades (26.0 +/- 1.9%) exhibiting minimal geographical overlap in the southeast. The eastern clade of Nerita atramentosa is also widespread in northern New Zealand (43 specimens, 10 localities), but no significant genetic differentiation is explained by the Tasman Sea, a 2000-km-wide oceanic barrier. Spatial genetic structure was not detected within either clade, consistent with the species' dispersive planktotrophic phase lasting for 5-6 months. Digital analysis of operculum colouration revealed substantial differences between eastern (tan) and western (black) specimens. Genetic analysis and visual inspection of 88 Australian specimens revealed a completely nonrandom association between mtDNA data and operculum colouration. Independent examination of a further 7822 specimens from 14 sites in southern Australia revealed both colour morphs at all localities, but reinforced the phylogeographical data by indicating a marked turnover in colour morph abundance associated with a palaeogeographical barrier: Wilsons Promontory. This sharp biogeographical disjunction is in marked contrast to the species' high dispersal abilities. The genetic similarity of Nerita morio (Easter Island) and the eastern Australian + New Zealand lineage (1.1 +/- 0.3%) provides further evidence of long-distance dispersal in southern Nerita. Phylogenetic relationships of nine species (four genera) of Neritidae, an almost exclusively tropical gastropod family, are consistent with the hypothesis that southern temperate black nerites comprise a monophyletic radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号