首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The slender filefish is a master of adaptive camouflage and can change its appearance within 1–3 s. Videos and photographs of this animal's cryptic body patterning and behavior were collected in situ under natural light on a Caribbean coral reef. We present an ethogram of body patterning components that includes large‐ and small‐scale spots, stripes and bars that confer a variety of cryptic patterns amidst a range of complex backgrounds. Field images were analyzed to investigate two aspects of camouflage effectiveness: (1) the degree of colour resemblance between animals and their nearby visual stimuli; and (2) the visibility of each fish's actual body outline vs. its illusory outline. Most animals more closely matched the colour of nearby visual stimuli than that of the surrounding background. Three‐dimensional dermal flaps complement the melanophore skin patterns by enhancing the complexity of the fish's physical skin texture to disguise its actual body shape, and the morphology of these structures was studied. The results suggest that the body patterns, skin texture, postures and swimming orientations putatively hinder both the detection and recognition of the fish by potential visual predators. Overall, the rapid speed of change of multiple patterns, colour blending with nearby backgrounds, and the physically complicated edge produced by dermal flaps effectively camouflage this animal among soft corals and macroalgae in the Caribbean Sea.  相似文献   

2.
The evolution and maintenance of colour polymorphisms remains a topic of considerable research interest. One key mechanism thought to contribute to the coexistence of different colour morphs is a bias in how conspicuous they are to visual predators. Although individuals of many species camouflage themselves against their background to avoid predation, differently coloured individuals within a species may vary in their capacity to do so. However, to date, very few studies have explicitly investigated the ability of different colour morphs to plastically adjust their colouration to match their background. The red devil (Amphilophus labiatus) is a Neotropical cichlid fish with a stable colour polymorphism, with the gold morph being genetically dominant and having a myriad of documented advantages over the dark morph. However, gold individuals are much rarer, which may be related to their heightened conspicuousness to would‐be predators. Here, we tested the ability of differently coloured individuals to phenotypically adjust the shade of their body colour and patterns to match their background. In particular, we filmed dark, gold and mottled (a transitioning phase from dark to gold) individuals under an identical set‐up on light vs. dark‐coloured substrates. We found that, in contrast to individuals of the dark morph, gold and mottled individuals were less capable of matching their body colouration to their background. As a result, gold individuals appeared to be more conspicuous. These results suggest that a difference in background matching ability could play an important role in the maintenance of colour polymorphisms.  相似文献   

3.
The so-called 'mimic octopuses' of tropical Indonesia are reputed to mimic up to 13 species of other local marine organisms. We tested for mimicry by allowing individuals of two species of octopus to habituate to divers, then observing and filming two species continuously as they foraged daily in the same open, featureless volcanic sand habitat. Mimicry of a local, abundant flounder occurred commonly during 5 days of natural foraging: nearly 500 episodes were analysed. Both octopus species mimicked the shape, swimming actions, speed, duration, and sometimes the coloration of swimming flounders. During flounder mimicry, octopuses were actively moving and conspicuous, whereas immediately before and after flounder mimicry, they were camouflaged and motionless (sitting or very slowly crawling). Furthermore, when motionless, octopuses assumed body patterns and postures that resembled small sponges, tube-worm tubes, or colonial tunicates, which were among the few objects in the open sand habitat. The key finding was that octopuses used flounder mimicry only when their movement would give away camouflage in this open habitat. In all cases, octopuses used mimicry as a primary defense. Several interactions with fishes and stomatopods were filmed and typical secondary defense behaviours, not mimicry, were used by the octopuses. Foraging occurred twice per day and two tactile feeding tactics were used. Dens and food were not limiting; thus, we observed a highly unusual circumstance of a guild of small, long-armed octopus species that shared the same habitat, den sources, food, activity period, and some behaviours.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 23–38.  相似文献   

4.
Cuttlefish are colour blind yet they appear to produce colour‐coordinated patterns for camouflage. Under natural in situ lighting conditions in southern Australia, we took point‐by‐point spectrometry measurements of camouflaged cuttlefish, Sepia apama, and various natural objects in the immediate visual surrounds to quantify the degree of chromatic resemblance between cuttlefish and backgrounds to potential fish predators. Luminance contrast was also calculated to determine the effectiveness of cuttlefish camouflage to this information channel both for animals with or without colour vision. Uniform body patterns on a homogeneous background of algae showed close resemblance in colour and luminance; a Uniform pattern on a partially heterogeneous background showed mixed levels of resemblance to certain background features. A Mottle pattern with some disruptive components on a heterogeneous background showed general background resemblance to some benthic objects nearest the cuttlefish. A noteworthy observation for a Disruptive body pattern on a heterogeneous background was the wide range in spectral contrasts compared to Uniform and Mottle patterns. This suggests a shift in camouflage tactic from background resemblance (which hinders detection by the predator) to more specific object resemblance and disruptive camouflage (which retards recognition). © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 535–551.  相似文献   

5.
Species that change colour present an ideal opportunity to study the control and tuning of camouflage with regards to the background. However, most research on colour‐pattern change and camouflage has been undertaken with species that rapidly alter appearance (in seconds), despite the fact that most species change appearance over longer time periods (e.g. minutes, hours, or days). We investigated whether individuals of the horned ghost crab (Ocypode ceratophthalmus) from Singapore can change colour, when this occurs, and how it influences camouflage. Individuals showed a clear daily rhythm of colour change, becoming lighter during the day and darker at night, and this significantly improved their camouflage to the sand substrate upon which they live. Individuals did not change colour when put into dark conditions, but they did become brighter when placed on a white versus a black substrate. Our findings show that ghost crabs have a circadian rhythm of colour change mediating camouflage, which is fine‐tuned by adaptation to the background brightness. These types of colour change can enable individuals to achieve effective camouflage under a range of environmental conditions, substrates, and time periods, and may be widespread in other species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 257–270.  相似文献   

6.
Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial substrates or between different natural substrates. First, the ability of cuttlefish to show substrate preference on artificial and natural substrates was established. Next, cuttlefish were offered substrates known to evoke three main camouflage body pattern types these animals show: Uniform or Mottle (function by background matching); or Disruptive. In a third experiment, cuttlefish were presented with conflicting visual cues on their left and right sides to assess their camouflage response. Given a choice between substrates they might encounter in nature, we found no strong substrate preference except when cuttlefish could bury themselves. Additionally, cuttlefish responded to conflicting visual cues with mixed body patterns in both the substrate preference and split substrate experiments. These results suggest that differences in energy costs for different camouflage body patterns may be minor and that pattern mixing and symmetry may play important roles in camouflage.  相似文献   

7.
Natural selection shapes the evolution of anti-predator defences, such as camouflage. It is currently contentious whether crypsis and disruptive coloration are alternative mechanisms of camouflage or whether they are interrelated anti-predator defences. Disruptively coloured prey is characterized by highly contrasting patterns to conceal the body shape, whereas cryptic prey minimizes the contrasts to background. Determining bird predation of artificial moths, we found that moths which were dissimilar from the background but sported disruptive patterns on the edge of their wings survived better in heterogeneous habitats than did moths with the same patterns inside of the wings and better than cryptic moths. Despite lower contrasts to background, crypsis did not provide fitness benefits over disruptive coloration on the body outline. We conclude that disruptive coloration on the edge camouflages its bearer independent of background matching. We suggest that this result is explainable because disruptive coloration is effective by exploiting predators' cognitive mechanisms of prey recognition and not their sensory mechanisms of signal detection. Relative to disruptive patterns on the body outline, disruptive markings on the body interior are less effective. Camouflage owing to disruptive coloration on the body interior is background-specific and is as effective as crypsis in heterogeneous habitats. Hence, we hypothesize that two proximate mechanisms explain the diversity of visual anti-predator defences. First, disruptive coloration on the body outline provides camouflage independent of the background. Second, background matching and disruptive coloration on the body interior provide camouflage, but their protection is background-specific.  相似文献   

8.
Aggression by top predators can create a “landscape of fear” in which subordinate predators restrict their activity to low‐risk areas or times of day. At large spatial or temporal scales, this can result in the costly loss of access to resources. However, fine‐scale reactive avoidance may minimize the risk of aggressive encounters for subordinate predators while maintaining access to resources, thereby providing a mechanism for coexistence. We investigated fine‐scale spatiotemporal avoidance in a guild of African predators characterized by intense interference competition. Vulnerable to food stealing and direct killing, cheetahs are expected to avoid both larger predators; hyenas are expected to avoid lions. We deployed a grid of 225 camera traps across 1,125 km2 in Serengeti National Park, Tanzania, to evaluate concurrent patterns of habitat use by lions, hyenas, cheetahs, and their primary prey. We used hurdle models to evaluate whether smaller species avoided areas preferred by larger species, and we used time‐to‐event models to evaluate fine‐scale temporal avoidance in the hours immediately surrounding top predator activity. We found no evidence of long‐term displacement of subordinate species, even at fine spatial scales. Instead, hyenas and cheetahs were positively associated with lions except in areas with exceptionally high lion use. Hyenas and lions appeared to actively track each, while cheetahs appear to maintain long‐term access to sites with high lion use by actively avoiding those areas just in the hours immediately following lion activity. Our results suggest that cheetahs are able to use patches of preferred habitat by avoiding lions on a moment‐to‐moment basis. Such fine‐scale temporal avoidance is likely to be less costly than long‐term avoidance of preferred areas: This may help explain why cheetahs are able to coexist with lions despite high rates of lion‐inflicted mortality, and highlights reactive avoidance as a general mechanism for predator coexistence.  相似文献   

9.
This field study describes the camouflage pattern repertoire, associated behaviours and speed of pattern change of Nassau groupers Epinephelus striatus at Little Cayman Island, British West Indies. Three basic camouflaged body patterns were observed under natural conditions and characterized quantitatively. The mean speed of pattern change across the entire body was 4·44 s (range = 0·97–9·87 s); the fastest pattern change as well as contrast change within a fixed pattern occurred within 1 s. Aside from apparent defensive camouflage, E. striatus used camouflage offensively to approach crustacean or fish prey, and three successful predation events were recorded. Although animal camouflage is a widespread tactic, dynamic camouflage is relatively uncommon and has been studied rarely in marine teleosts under natural conditions. The rapid changes observed in E. striatus suggest direct neural control of some skin colouration elements, and comparative studies of functional morphology and behaviour of colour change in other coral‐reef teleosts are likely to reveal new mechanisms and adaptations of dynamic colouration.  相似文献   

10.
Aim Coral reefs are widely considered to be particularly vulnerable to changes in ocean temperatures, yet we understand little about the broad‐scale spatio‐temporal patterns that may cause coral mortality from bleaching and disease. Our study aimed to characterize these ocean temperature patterns at biologically relevant scales. Location Global, with a focus on coral reefs. Methods We created a 4‐km resolution, 21‐year global ocean temperature anomaly (deviations from long‐term means) database to quantify the spatial and temporal characteristics of temperature anomalies related to both coral bleaching and disease. Then we tested how patterns varied in several key metrics of disturbance severity, including anomaly frequency, magnitude, duration and size. Results Our analyses found both global variation in temperature anomalies and fine‐grained spatial variability in the frequency, duration and magnitude of temperature anomalies. However, we discovered that even during major climatic events with strong spatial signatures, like the El Niño–Southern Oscillation, areas that had high numbers of anomalies varied between years. In addition, we found that 48% of bleaching‐related anomalies and 44% of disease‐related anomalies were less than 50 km2, much smaller than the resolution of most models used to forecast climate changes. Main conclusions The fine‐scale variability in temperature anomalies has several key implications for understanding spatial patterns in coral bleaching‐ and disease‐related anomalies as well as for designing protected areas to conserve coral reefs in a changing climate. Spatial heterogeneity in temperature anomalies suggests that certain reefs could be targeted for protection because they exhibit differences in thermal stress. However, temporal variability in anomalies could complicate efforts to protect reefs, because high anomalies in one year are not necessarily predictive of future patterns of stress. Together, our results suggest that temperature anomalies related to coral bleaching and disease are likely to be highly heterogeneous and could produce more localized impacts of climate change.  相似文献   

11.
Cuttlefish camouflage: a quantitative study of patterning   总被引:2,自引:0,他引:2  
To investigate camouflage design, we compared the responses of two species of cuttlefish ( Sepia officinalis and Sepia pharaonis ) with controlled but naturalistic backgrounds, consisting of mixtures of 1-mm and 9-mm diameter coloured pebbles. Quantitative analysis of image data using methods adapted from functional imaging research found differences in how the two species camouflage themselves. Whereas S. officinalis switches from background resemblance to a disruptive pattern as it moves from a fine to a coarsely patterned background particle, S. pharaonis blends the two types of pattern. We suggest that the differences may arise because S. pharaonis needs to produce camouflage that is effective when viewed over a relatively wide range of distances.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 335–345.  相似文献   

12.
Patterns of isolation by distance are uncommon in coral populations. Here, we depart from historical trends of large‐scale, geographical genetic analyses by scaling down to a single patch reef in Kāne‘ohe Bay, Hawai‘i, USA, and map and genotype all colonies of the coral, Pocillopora damicornis. Six polymorphic microsatellite loci were used to assess population genetic and clonal structure and to calculate individual colony pairwise relatedness values. Our results point to an inbred, highly clonal reef (between 53 and 116 clonal lineages of 2352 genotyped colonies) with a much skewed genet frequency distribution (over 70% of the reef was composed of just seven genotypes). Spatial autocorrelation analyses revealed that corals found close together on the reef were more genetically related than corals further apart. Spatial genetic structure disappears, however, as spatial scale increases and then becomes negative at the largest distances. Stratified, random sampling of three neighbouring reefs confirms that reefs are demographically open and inter‐reef genetic structuring was not detected. Attributing process to pattern in corals is complicated by their mixed reproductive strategies. Separate autocorrelation analyses, however, show that the spatial distribution of both clones and nonclones contributes to spatial genetic structure. Overall, we demonstrate genetic structure on an intrareef scale and genetic panmixia on an inter‐reef scale indicating that, for P. damicornis, the effect of small‐ and large‐scale dispersal processes on genetic diversity are not the same. By starting from an interindividual, intrareef level before scaling up to an inter‐reef level, this study demonstrates that isolation‐by‐distance patterns for the coral P. damicornis are limited to small scales and highlights the importance of investigating genetic patterns and ecological processes at multiple scales.  相似文献   

13.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

14.
Feathers confer protection against biophysical agents and determine flying ability. The geometry and arrangement of the barbs, together with the keratin and pigments deposited in the feathers, determine the mechanical stability of the vane, and its stiffness and resistance to abrasive agents. In colour‐polymorphic species, individuals display alternative colour morphs, which can be associated with different foraging strategies. Each morph may therefore require specific flying abilities, and their feathers may be exposed to different abrasive agents. Feathers of differently coloured individuals may thus have a specific structure, and colour pigments may help resist abrasive agents and improve stiffness. We examined these predictions in the barn owl (Tyto alba), a species for which the ventral body side varies from white to dark reddish pheomelanic, and in the number and size of black spots located at the tip of the feathers. White and reddish birds show different foraging strategies, and the size of black feather spots is associated with several phenotypic attributes. We found that birds displaying a darker reddish coloration on the ventral body side deposit more melanin pigments in their remiges, which also have fewer barbs. This suggests that wear resistance increases with darkness, whereas feathers of lighter coloured birds may bend less easily. Accordingly, individuals displaying a lighter reddish coloration on the ventral body side, and those displaying larger black spots, displayed more black transverse bars on their remiges: as larger‐spotted individuals are heavier and longer‐winged birds also have more transverse bars, these bars may reduce feather bending when flying. We conclude that differently coloured individuals produce wing feathers of different strengths to adopt alternative behavioural and life history strategies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 562–573.  相似文献   

15.
The goal of this study was to compare the richness and endemism patterns of Mexican species of amphibians and reptiles at different spatial scales. We used the best available dataset of distributional ranges generated from ecological niche models and employed geographically weighted regressions (GWRs) to test whether richness and endemism were related. Patterns were found to vary with the scale used for richness and endemism, and these patterns were not coincident. The results showed that: (1) only relatively coarse spatial scales can address latitudinal patterns in amphibians and reptiles, and, in fine scales, they are related to topographic formations; (2) areas of greatest endemism for amphibians and reptiles are located in the highlands of the central or southern part of the country, although not necessarily in the same specific highlands for both groups; (3) there is a strong average correlation between richness and endemism for both groups, indicating that the same factors contribute to both patterns, but these factors act differentially in terms of regions among amphibians and reptiles; and (4) the scale at which the analysis is conducted is important, and we believe that careful consideration of spatial scale must be undertaken to avoid false conclusions. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 305–316.  相似文献   

16.
Great Bear Lake is the most northerly lake of its size and provides unique opportunities for intraspecific diversification. Despite increasing attention to intraspecific polymorphism, several knowledge gaps remain (e.g. determining the extent of intraspecific diversification in large relatively pristine lakes and at which spatial scale it can occur). We focused on geographical patterns of morphological differentiation within lake trout (Salvelinus namaycush) to describe two levels of intralake diversification in Great Bear Lake. We used a combination of geometric and traditional linear measurements to quantify differences in body shape, head shape, and fin and body lengths among 910 adult lake trout from the five distinct arms of Great Bear Lake. Although head and fin linear measurements discriminated the three common morphotypes at the whole‐lake level, inter‐arm variation in body shape was observed within each morphotype. A comparison of genetic and morphological distance matrices revealed the lack of an association between the two sets of data, although both comparisons revealed an association in the inter‐arm variation patterns among morphotypes, suggesting a phenotypically plastic response to distinct environments. The whole‐lake and inter‐arm morphological variation observed within lake trout demonstrates the importance of considering scale, especially across large lakes that exhibit marked complexity and a variety of freshwater habitats. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 109–125.  相似文献   

17.
Although body size can affect individual fitness, ontogenetic and spatial variation in the ecology of an organism may determine the relative advantages of size and growth. During an 8‐year field study in the Bahamas, we examined selective mortality on size and growth throughout the entire reef‐associated life phase of a common coral‐reef fish, Stegastes partitus (the bicolour damselfish). On average, faster‐growing juveniles experienced greater mortality, though as adults, larger individuals had higher survival. Comparing patterns of selection observed at four separate populations revealed that greater population density was associated with stronger selection for larger adult size. Large adults may be favoured because they are superior competitors and less susceptible to gape‐limited predators. Laboratory experiments suggested that selective mortality of fast‐growing juveniles was likely because of risk‐prone foraging behaviour. These patterns suggest that variation in ecological interactions may lead to complex patterns of lifetime selection on body size.  相似文献   

18.
On coral reefs in New Caledonia, the eggs of demersal‐spawning fishes are consumed by turtle‐headed seasnakes (Emydocephalus annulatus). Fish repel nest‐raiding snakes by a series of tactics. We recorded 232 cases (involving 22 fish species) of antipredator behaviour towards snakes on a reef near Noumea. Blennies and gobies focused their attacks on snakes entering their nests, whereas damselfish (Pomacentridae) attacked passing snakes, as well as nest‐raiders (reflecting territorial defence). Biting the snake was the most common form of attack, although damselfish and blennies also slapped snakes with the tail, or (blennies only) plugged the nest entrance with the parent fish's body. Gobies rarely defended the nest, although they sometimes bit or threw sand at the snake. A snake was more likely to flee if it was attacked before it began feeding rather than after it found the eggs (82% versus 3% repelled) and if bitten on the head rather than the body (68% versus 53%). Tail‐slaps were not effective, although plugging the burrow and throwing sand often caused snakes to flee. These strong patterns reflect phylogenetic variation in fish behaviour (e.g. damselfish detect a snake approach sooner than do substrate‐dwelling blennies and gobies) coupled with intraspecific variation in snake diets. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 415–425.  相似文献   

19.
Parallel evolutionary radiations in adjacent locations have been documented in many systems, but typically at limited geographical scales. Here, we compare patterns of evolutionary radiation at the global scale in iguanian lizards, the dominant clade of lizards. We generated a new time‐calibrated phylogeny including 153 iguanian species (based on mitochondrial and nuclear data) and obtained data on morphology and microhabitats. We then compared patterns of species diversification, morphological disparity, and ecomorphological relationships in the predominantly Old World and New World clades (Acrodonta and Pleurodonta, respectively), focusing on the early portions of these radiations. Acrodonts show relatively constant rates of species diversification and disparity over time. In contrast, pleurodonts show an early burst of species diversification and less‐than‐expected morphological disparity early in their history, and slowing diversification and increasing disparity more recently. Analyses including all species (with MEDUSA) suggest accelerated diversification rates in certain clades within both Acrodonta and Pleurodonta, which strongly influences present‐day diversity patterns. We also find substantial differences in ecomorphological relationships between these clades. Our results demonstrate that sister clades in different global regions can undergo very different patterns of evolutionary radiation over similar time frames. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

20.
Camouflage conceals animals from predators and depends on the interplay between the morphology and behaviour of animals. Behavioural elements of animals, such as the choice of a resting spot or posture, are important for effective camouflage, as well as the animals’ cryptic appearance. To date, the type of sensory input that mediates resting site choice remains poorly understood. Previously, we showed that bark‐like moths perceive and rely on bark structure to seek out cryptic resting positions and body orientations on tree trunks. In the present study, we investigated the sensory organs through which moths perceive the structure of bark when positioning their bodies in adaptive resting orientations. We amputated (or blocked) each one of the hypothetical sensory organs in moths (antennae, forelegs, wings, and eyes) and tested whether they were still able to perceive bark structure properly and adopt adaptive resting orientations. We found that visual information or stimulation is crucial for adaptively orienting their bodies when resting and tactile information from wings may play an additional role. The present study reveals multimodal information use by moths to achieve visual camouflage and highlights the sensory mechanism that is responsible for the adaptive behaviour of cryptic insects. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 900–904.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号