共查询到20条相似文献,搜索用时 0 毫秒
1.
Boryana E. Kasabova Trenton W. Holliday 《American journal of physical anthropology》2015,156(4):614-624
A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) “independently estimated” body surface areas and “independently estimated” body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when “independently estimated” surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between “heat-adapted” and “cold-adapted” populations. As expected, the “cold-adapted” group has significantly more of its body surface area and volume in its trunk than does the “heat-adapted” group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. Am J Phys Anthropol 156:614–624, 2015. © 2014 Wiley Periodicals, Inc. 相似文献
2.
Trenton W. Holliday Charles E. Hilton 《American journal of physical anthropology》2010,142(2):287-302
Given the well‐documented fact that human body proportions covary with climate (presumably due to the action of selection), one would expect that the Ipiutak and Tigara Inuit samples from Point Hope, Alaska, would be characterized by an extremely cold‐adapted body shape. Comparison of the Point Hope Inuit samples to a large (n > 900) sample of European and European‐derived, African and African‐derived, and Native American skeletons (including Koniag Inuit from Kodiak Island, Alaska) confirms that the Point Hope Inuit evince a cold‐adapted body form, but analyses also reveal some unexpected results. For example, one might suspect that the Point Hope samples would show a more cold‐adapted body form than the Koniag, given their more extreme environment, but this is not the case. Additionally, univariate analyses seldom show the Inuit samples to be more cold‐adapted in body shape than Europeans, and multivariate cluster analyses that include a myriad of body shape variables such as femoral head diameter, bi‐iliac breadth, and limb segment lengths fail to effectively separate the Inuit samples from Europeans. In fact, in terms of body shape, the European and the Inuit samples tend to be cold‐adapted and tend to be separated in multivariate space from the more tropically adapted Africans, especially those groups from south of the Sahara. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
3.
4.
Benjamin Baiser Dominique Gravel Alyssa R. Cirtwill Jennifer A. Dunne Ashkaan K. Fahimipour Luis J. Gilarranz Joshua A. Grochow Daijiang Li Neo D. Martinez Alicia McGrew Timothe Poisot Tamara N. Romanuk Daniel B. Stouffer Lauren B. Trotta Fernanda S. Valdovinos Richard J. Williams Spencer A. Wood Justin D. Yeakel 《Global Ecology and Biogeography》2019,28(9):1204-1218
5.
6.
Many studies have linked measures of adult body shape and mass in ancient and contemporary populations to ecogeographical variables such as temperature and latitude. These results tend to support Bergmann's rule, which posits that bodies will be relatively less slender for their height in colder climates and more slender in warmer climates. Less well explored is the ontogeny of these population‐level differences. Here we use data on infants and children from 46 low and lower income countries to test whether children's weight for height is associated with measures of temperature and latitude. We also test the hypothesis that children living in areas with greater pathogen prevalence will be lighter for their height because of life history trade‐offs between investment in immune function and growth. Finally, we test whether population specific adult body mass predicts infant and child body mass, and whether this is independent of ecogeographical variables. Our results show that maximum monthly temperature explains 17% of children's weight for height while adult population‐level body mass explains ~44% (Table 5 ). The measures of pathogen prevalence explain little of the variation in children's body shape (8%; P > 0.05). Our results suggest that population differences are consistent with Bergmann's rule but parental body shape explains more variance. Moreover, these population‐level differences arise early in development, suggesting that any possible environmental influences occur in utero and/or result from epigenetic or population genetic differences. Am J Phys Anthropol 154:232–238, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
7.
V. García‐Navas V. Noguerales P. J. Cordero J. Ortego 《Journal of evolutionary biology》2017,30(8):1592-1608
Sexual size dimorphism (SSD) is widespread and variable in nature. Although female‐biased SSD predominates among insects, the proximate ecological and evolutionary factors promoting this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative methods on eight subfamilies of Iberian grasshoppers (85 species) to examine the validity of different models of evolution of body size and SSD and explore how they are shaped by a suite of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by different evolutionary pressures (female fecundity, strength of sexual selection, length of the breeding season). Body size disparity primarily accumulated late in the history of the group and did not follow a Brownian motion pattern, indicating the existence of directional evolution for this trait. We found support for the converse of Rensch's rule (i.e. females are proportionally bigger than males in large species) across all taxa but not within the two most speciose subfamilies (Gomphocerinae and Oedipodinae), which showed an isometric pattern. Our results do not provide support for the fecundity or sexual selection hypotheses, and we did not find evidence for significant effects of habitat use. Contrary to that expected, we found that species with narrower reproductive window are less dimorphic in size than those that exhibit a longer breeding cycle, suggesting that male protandry cannot solely account for the evolution of female‐biased SSD in Orthoptera. Our study highlights the need to consider alternatives to the classical evolutionary hypotheses when trying to explain why in certain insect groups males remain small. 相似文献
8.
S. C. Andrew L. L. Hurley M. M. Mariette S. C. Griffith 《Journal of evolutionary biology》2017,30(12):2156-2164
The most commonly documented morphological response across many taxa to climatic variation across their range follows Bergmann's rule, which predicts larger body size in colder climates. In observational data from wild zebra finches breeding across a range of temperatures in the spring and summer, we show that this relationship appears to be driven by the negative effect of high temperatures during development. This idea was then experimentally tested on zebra finches breeding in temperature‐controlled climates in the laboratory. These experiments confirmed that those individualso produced in a hot environment (30 °C) were smaller than those produced in cool conditions (18 °C). Our results suggest a proximate causal link between temperature and body size and suggest that a hotter climate during breeding periods could drive significant changes in morphology within and between populations. This effect could account for much of the variation in body size that drives the well‐observed patterns first described by Bergmann and that is still largely attributed to selection on adult body size during cold winters. The climate‐dependent developmental plasticity that we have demonstrated is an important component in understanding how endotherms may be affected by climate change. 相似文献
9.
Nuno Monteiro Mário Cunha Lídia Ferreira Natividade Vieira Agostinho Antunes David Lyons Adam G. Jones 《Global Change Biology》2017,23(9):3600-3609
While an understanding of evolutionary processes in shifting environments is vital in the context of rapid ecological change, one of the most potent selective forces, sexual selection, remains curiously unexplored. Variation in sexual selection across a species range, especially across a gradient of temperature regimes, has the potential to provide a window into the possible impacts of climate change on the evolution of mating patterns. Here, we investigated some of the links between temperature and indicators of sexual selection, using a cold‐water pipefish as model. We found that populations differed with respect to body size, length of the breeding season, fecundity, and sexual dimorphism across a wide latitudinal gradient. We encountered two types of latitudinal patterns, either linear, when related to body size, or parabolic in shape when considering variables related to sexual selection intensity, such as sexual dimorphism and reproductive investment. Our results suggest that sexual selection intensity increases toward both edges of the distribution and that the large differences in temperature likely play a significant role. Shorter breeding seasons in the north and reduced periods for gamete production in the south certainly have the potential to alter mating systems, breeding synchrony, and mate monopolization rates. As latitude and water temperature are tightly coupled across the European coasts, the observed patterns in traits related to sexual selection can lead to predictions regarding how sexual selection should change in response to climate change. Based on data from extant populations, we can predict that as the worm pipefish moves northward, a wave of decreasing selection intensity will likely replace the strong sexual selection at the northern range margin. In contrast, the southern populations will be followed by heightened sexual selection, which may exacerbate the problem of local extinction at this retreating boundary. 相似文献
10.
Jinjian Yang Qijia Wu Rong Xiao Jupeng Zhao Jian Chen Xiaoguo Jiao 《Ecology and evolution》2018,8(8):4352-4359
Variations in species morphology and life‐history traits strongly correlate with geographic and climatic characteristics. Most studies on morphological variations in animals focus on ectotherms distributed on a large geographic scale across latitudinal and/or altitudinal gradient. However, the morphological variations of spiders living in the same habitats across different seasons have not been reported. In this study, we used the wolf spider, Pardosa astrigera, as a model to determine seasonal differences in adult body size, melanism, fecundity, and egg diameter both in the overwintering and the first generation for 2010 and 2016. The results showed that in 2010, both females and males of the overwintering generation were significantly darker than the first generation. Moreover, the overwintering females were markedly larger and produced more and bigger eggs than the first generation in both 2010 and 2016. Considering the overwintering P. astrigera experiencing low temperature and/or desiccation stress, these results suggest that substantially darker and larger body of the overwintering generation is adaptive to adverse conditions. 相似文献
11.
12.
Alexander L. Jaffe Shane C. Campbell‐Staton Jonathan B. Losos 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(4):760-774
The green anole, Anolis carolinensis, has long been an important model organism for studies of physiology and behaviour, and recently became the first reptile to have its genome sequenced. With a large and environmentally heterogeneous distribution, especially in relation to well‐studied Antillean relatives, A. carolinensis is also emerging as an important organism for novel studies of geographical differentiation and adaptation. In the present study, we quantify the degree of morphological variation in this species and test for environmental correlates of this variation. We also examine adherence to Bergmann's and Allen's rule, two eco‐geographical principles that have been well studied over large species ranges. We sampled from 14 populations across the distribution of the species in North America and measured 28 distinct morphological traits. We also collected a suite of environmental variables for each site, including those related to temperature, precipitation, and vegetation. Ultimately, we found a large degree of geographical variation in morphology, with head traits contributing the most to differences among populations. Morphological variation was correlated with variation in temperature, precipitation, and latitude across sites. We found no support for reverse Bergmann's rule typical of squamates, although we did find a trend of reverse Allen's rule. Ultimately, the present study provides a novel look at A. carolinensis and establishes it as a strong candidate for further studies of variation and adaptation over a large range. 相似文献
13.
Eric J. Sargis Virginie Millien Neal Woodman Link E. Olson 《Ecology and evolution》2018,8(3):1634-1645
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules. 相似文献
14.
The morph ratio distribution in polymorphic species often varies clinally, with a gradual change in morph ratios across the distributional range of the species. In polymorphic bird populations, clinal variation is rarely quantified. We describe a cline in the morph ratios of Black Sparrowhawks across South Africa, which is principally driven by a higher ratio of dark morph birds in the newly colonized southwest of the country. Across the 1400 km of our cline, the probability of a bird being a dark morph declined from over 80% close to the Cape Peninsula to under 20% in the northeast. Higher frequencies of dark morphs were associated with a higher proportion of rainfall falling during the winter breeding months. Further investigation revealed relationships between the proportion of dark morphs and altitude, amount of rainfall during the breeding months, and an interaction between this variable and temperature. These results provide some support for the suggestion that the higher frequency of dark morphs in the southwest is an adaptive response, rather than the result of a founder effect or genetic drift. These findings also suggest that, in theory, polymorphic species may be better adapted to cope with the challenges of climate change or may be able to expand their ranges more quickly into novel climatic areas, since selection pressure can act on a pre‐existing trait that may be beneficial in new conditions. 相似文献
15.
The validity of Bergmann's rule, perhaps the best known ecogeographical rule, has been questioned for ectothermic species. Here, we explore the interspecific version of the rule documenting body size gradients for anurans across the whole New World and evaluating which environmental variables best explain the observed patterns. We assembled a dataset of body sizes for 2761 anuran species of the Western Hemisphere and conducted assemblage‐based and cross‐species analyses that consider the spatial and phylogenetic structure in the data. In accordance with heat and water‐related explanations for body size clines, we found a consistent association of median body size and potential evapotranspiration across the New World. A relevant role of water availability also emerges, suggesting the joint importance of body size for thermoregulation and hydroregulation in anurans. Anurans do not follow a simple Bergmannian pattern of increasing size towards high latitudes. Consistent with previous regional findings, our Hemisphere‐wide analyses detect that the geographic variation in anuran body sizes is highly dependent on a trade‐off between heat and water balance. The observed size‐climate relationships possibly emerge from the interplay between thermoregulatory abilities and the benefits inherent to reduced surface‐to‐volume ratios in larger species, which decrease the rates of evaporative water loss and favour heat retention. Our results also show how temperature becomes important for species that are directly in contact with the substrate and water, like burrowing and terrestrial anurans, while arboreal species exhibit a body size cline linked with potential evapotranspiration. 相似文献
16.
Evgeny S. Roitberg Valentina F. Orlova Nina A. Bulakhova Valentina N. Kuranova Galina V. Eplanova Oleksandr I. Zinenko Oscar Arribas Luk Kratochvíl Katarina Ljubisavljevi Vladimir P. Starikov Henk Strijbosch Sylvia Hofmann Olga A. Leontyeva Wolfgang Bhme 《Ecology and evolution》2020,10(11):4531-4561
Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex‐specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south‐western France) exhibited a smaller female size and less female‐biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw‐tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body size—climate relationships in intraspecific units. 相似文献
17.
Gentile Francesco Ficetola Emiliano Colleoni Julien Renaud Stefano Scali Emilio Padoa‐Schioppa Wilfried Thuiller 《Global Change Biology》2016,22(6):2013-2024
Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old‐world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two‐step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present‐day species morphological response, suggesting that the ability of morphological evolution may play a role for species’ persistence under climate change. The possibility that present‐day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring species persistence. 相似文献
18.
Progressive body‐size dwarfing of animal populations is predicted under chronic mortality stress, such as that inflicted by human harvesting. However, empirical support for such declines in body size due to elevated mortality is lacking. In fact, the size of three macropodid species ─ the two grey kangaroo species, Macropus fuliginosus and M. giganteus, and the Red‐necked Wallaby, M. rufogriseus ─ appears to have increased since European settlement in Australia, despite these species being subjected to size‐selective harvesting over this period. To test whether this unexpected trend also characterises other species, we sought evidence of human‐induced body‐size changes in the two most widely distributed kangaroo species, the Euro Macropus robustus and Red Kangaroo M. rufus, from the late 19th Century onwards. Spatial autoregressive models controlling for age, sex and island effects were first used to identify environmental predictors of body size and to evaluate multi‐causal explanations for spatial body‐size patterns. Primary productivity emerged as the key driver of body size in both species, while heat conservation was supported as a further mechanism explaining the large body size of M. robustus in cold climatic regions. After controlling for these environmental factors, we find that the size of M. rufus has been stable over time and limited support for a small increase in the size of M. robustus. Hence, there is no empirical evidence that contemporary size‐selective harvesting has reduced body size in these species. Rather, the latter result supports the possibility that pasture improvement and/or dingo control (and associated reduction in predation pressure) facilitated body‐size increases following European settlement in Australia. 相似文献
19.
Spatial and temporal phenotypic differentiation in mean body size is of commonplace occurrence, but the underlying causes remain often unclear: both genetic differentiation in response to selection (or drift) and environmentally induced plasticity can create similar phenotypic patterns. Studying changes in body mass in Siberian jays (Perisoreus infaustus) over three decades, we discovered that mean body mass declined drastically (ca. 10%) over the first two decades, but increased markedly thereafter back to almost the initial level. Quantitative genetic analyses revealed that although body mass was heritable (h2 = 0.46), the pronounced temporal decrease in body mass was mainly a product of phenotypic plasticity. However, a concomitant and statistically significant decrease in predicted breeding values suggests a genetic component to this change. The subsequent increase in mean body mass was indicated to be entirely due to plasticity. Selection on body mass was estimated to be too weak to fully account for the observed genetic decline in body mass, but bias in selection differential estimates due to environmental covariance between body mass and fitness is possible. Hence, the observed body mass changes appear to be driven mainly by phenotypic plasticity. Although we were not able to identify the ecological driver of the observed plastic changes, the results highlight the utility of quantitative genetic approaches in disentangling genetic and phenotypic changes in natural populations. 相似文献
20.
Jack V. Johnson Catherine Finn Jacinta Guirguis Luke E. B. Goodyear Lilly P. Harvey Ryan Magee Santiago Ron Daniel Pincheira-Donoso 《Global Ecology and Biogeography》2023,32(8):1311-1322