首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chewing louse genus Colpocephalum parasitizes nearly a dozen distantly related orders of birds. Such a broad host distribution is relatively unusual in lice. However, the monophyly of the genus Colpocephalum has never been tested using molecular characters. Using one nuclear and one mitochondrial gene, we inferred a phylogeny for 54 lice from the genus Colpocephalum and other morphologically similar genera. The resulting phylogeny demonstrates that Colpocephalum itself is not monophyletic. However, these data support the existence of a Colpocephalum complex within which several lineages are restricted to particular host orders. These lineages corresponded to previously described genera, some of which are morphologically distinct and currently considered subgenera. Maddison–Slatkin tests were performed on the resulting phylogeny and showed that host order, host family and biogeographic region had significant phylogenetic signal when mapped onto the Colpocephalum complex phylogeny. A PARAFIT analysis comparing the overall Colpocephalum complex phylogeny to a host phylogeny revealed significant congruence between host and parasite trees. We also compared the cophylogenetic history of Colpocephalum and their hosts to that of a second distantly related feather louse genus, Degeeriella, which also infests diurnal birds of prey. Using PARAFIT to identify individual host–parasite links that contributed to overall congruence, there was no evidence of correlated cophylogenetic patterns between these two louse groups, suggesting that their host distribution patterns have been shaped by different evolutionary processes.  相似文献   

2.
Coevolutionary processes that drive the patterns of host–parasite associations can be deduced through congruence analysis of their phylogenies. Feather lice and their avian hosts have previously been used as typical model systems for congruence analysis; however, such analyses are strongly biased toward nonpasserine hosts in the temperate zone. Further, in the Afrotropical region especially, cospeciation studies of lice and birds are entirely missing. This work supplements knowledge of host–parasite associations in lice using cospeciation analysis of feather lice (genus Myrsidea and the Brueelia complex) and their avian hosts in the tropical rainforests of Cameroon. Our analysis revealed a limited number of cospeciation events in both parasite groups. The parasite–host associations in both louse groups were predominantly shaped by host switching. Despite a general dissimilarity in phylogeny for the parasites and hosts, we found significant congruence in host–parasite distance matrices, mainly driven by associations between Brueelia lice and passerine species of the Waxbill (Estrildidae) family, and Myrsidea lice and their Bulbul (Pycnonotidae) host species. As such, our study supports the importance of complex biotic interactions in tropical environments.  相似文献   

3.
Brood parasitic birds offer a unique opportunity to examine the ecological and evolutionary determinants of host associations in avian feather lice (Phthiraptera). Brood parasitic behaviour effectively eliminates vertical transfer of lice between parasitic parents and offspring at the nest, while at the same time providing an opportunity for lice associated with the hosts of brood parasites to colonize the brood parasites as well. Thus, the biology of brood parasitism allows a test of the relative roles of host specialization and dispersal ecology in determining the host-parasite associations of birds and lice. If the opportunity for dispersal is the primary determinant of louse distributions, then brood parasites and their hosts should have similar louse faunas. In contrast, if host-specific adaptations limit colonization ability, lice associated with the hosts of brood parasites may be unable to persist on the brood parasites despite having an opportunity for colonization. We surveyed lice on four brood parasitic finch species (genus Vidua), their estrildid finch host species, and a few ploceid finches. While Brueelia lice were found on both parasitic and estrildid finches, a molecular phylogeny showed that lice infesting the two avian groups belong to two distinct clades within Brueelia. Likewise, distinct louse lineages within the amblyceran genus Myrsidea were found on estrildid finches and the parasitic pin-tailed whydah (Vidua macroura), respectively. Although common on estrildid finches, Myrsidea lice were entirely absent from the brood parasitic indigobirds. The distribution and relationships of louse species on brood parasitic finches and their hosts suggest that host-specific adaptations constrain the ability of lice to colonize new hosts, at least those that are distantly related.  相似文献   

4.
The louse genus Carduiceps Clay & Meinertzhagen, 1939 is widely distributed on sandpipers and stints (Calidrinae). The current taxonomy includes three species on the Calidrinae (Carduiceps meinertzhageni, Carduiceps scalaris, Carduiceps zonarius) and four species on noncalidrine hosts. We estimated a phylogeny of four of the seven species of Carduiceps (the three mentioned above and Carduiceps fulvofasciatus) from 13 of the 29 hosts based on three mitochondrial loci, and evaluated the relative importance of flyway differentiation (same host species has different lice along different flyways) and flyway homogenization (different host species have the same lice along the same flyway). We found no evidence for either process. Instead, the present, morphology‐based, taxonomy of the genus corresponds exactly to the gene‐based phylogeny, with all four included species monophyletic. Carduiceps zonarius is found both to inhabit a wider range of hosts than wing lice of the genus Lunaceps occurring on the same group of birds, and to occur on Calidris sandpipers of all sizes, both of which are unexpected for a body louse. The previously proposed family Esthiopteridae is found to be monophyletic with good support. The concatenated dataset suggests that the pigeon louse genus Columbicola may be closely related to the auk and diver louse genus Craspedonirmus. These two genera share some morphological characters with Carduiceps, but no support was obtained for grouping these three genera together. Based on mitochondrial data alone, the relationships among genera within this proposed family cannot be properly assessed, but some previously suggested relationships within this proposed family are confirmed.  相似文献   

5.
Studies of major switches by parasites between highly divergent host lineages are important for understanding new opportunities for parasite diversification. One such major host switch is inferred for avian feather lice (Ischnocera) in the family Goniodidae, which parasitize two distantly‐related groups of birds: Galliformes (pheasants, quail, partridges, etc.) and Columbiformes (pigeons and doves). Although there have been several cophylogenetic studies of lice at the species level, few studies have focused on such broad evolutionary patterns and major host‐switching events. Using a phylogeny based on DNA sequences for goniodid feather lice, we investigated the direction of this major host switch. Unexpectedly, we found that goniodid feather lice have switched host orders, not just once, but twice. A primary host switch occurred from Galliformes to Columbiformes, leading to a large radiation of columbiform body lice. Subsequently, there was also a host switch from Columbiformes back to Galliformes, specifically to megapodes in the Papua–Australasian region. The results of the present study further reveal that, although morphologically diagnosable lineages are supported by molecular data, many of the existing genera are not monophyletic and a revision of generic limits is needed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 614–625.  相似文献   

6.
A phylogenetic analysis of generic relationships for avian chewing lice of families Goniodidae and Heptapsogasteridae (Phthiraptera: Ischnocera) is presented. These lice, hosted by galliform, columbiform and tinamiform birds are reputedly basal in the phylogeny of Ischnocera. A cladistic analysis of sixty‐two adult morphological characters from thirty‐one taxa revealed thirty equally parsimonious cladograms. The phylogeny is well resolved within Heptap‐sogasteridae and supports the monophyly of subfamily Strongylocotinae (sensu Eichler 1963 ). Resolution within Goniodidae is lower but suggests that the genera hosted by Columbiformes are largely monophyletic. Mapping host taxonomy on to the phylogeny of the lice reveals a consistent pattern which is largely congruent down to the rank of host family, although at lower taxonomic levels the association appears to be more complex. The inclusion of more louse taxa may help considerably to unravel the coevolutionary history of both the hosts and their parasites.  相似文献   

7.
Many species of pocket gophers and their ectoparasitic chewing lice have broadly congruent phylogenies, indicating a history of frequent codivergence. For a variety of reasons, phylogenies of codiverging hosts and parasites are expected to be less congruent for more recently diverged taxa. This study is the first of its scale in the pocket gopher and chewing louse system, with its focus entirely on comparisons among populations within a single species of host and 3 chewing louse species in the Geomydoecus bulleri species complex. We examined mitochondrial DNA from a total of 46 specimens of Geomydoecus lice collected from 11 populations of the pocket gopher host, Pappogeomys bulleri. We also examined nuclear DNA from a subset of these chewing lice. Louse phylogenies were compared with a published pocket gopher phylogeny. Contrary to expectations, we observed a statistically significant degree of parallel cladogenesis in these closely related hosts and their parasites. We also observed a higher rate of evolution in chewing louse lineages than in their corresponding pocket gopher hosts. In addition, we found that 1 louse species (Geomydoecus burti) may not be a valid species, that subspecies within G. bulleri are not reciprocally monophyletic, and that morphological and genetic evidence support recognition of a new species of louse, Geomydoecus pricei.  相似文献   

8.
We investigated the diversity, cophylogenetic relationships, and biogeography of hoplopleurid sucking lice (Phthiraptera: Anoplura) parasitizing rodents (Muridae: Sigmodontinae) in the Manu National Park and Biosphere Reserve. Our morphological and molecular studies reveal that 15 distinct louse species parasitize 19 rodent species. Three of these louse species are new to science, and all but two of the host associations were previously unknown. We find that hoplopleurid lice in South America parasitize multiple host species across a large geographic area, and that Peru represents a new geographic locality for almost all the louse species collected in the present study. Phylogenetic analyses of mitochondrial and nuclear data reveal that the louse family Hoplopleuridae and the genera Hoplopleura and Pterophthirus are not monophyletic, and lice do not appear to group by host tribe, collecting locality, or collection elevation. The lack of monophyly for these apparently natural groups (taxonomic, locality, and elevation) indicates that host switching with or without parasite speciation may be prevalent among hoplopleurid lice. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 598–610.  相似文献   

9.
Historically, comparisons of host and parasite phylogenies have concentrated on cospeciation. However, many of these comparisons have demonstrated that the phylogenies of hosts and parasites are seldom completely congruent, suggesting that phenomena other than cospeciation play an important role in the evolution of host-parasite assemblages. Other coevolutionary phenomena, such as host switching, parasite duplication (speciation on the host), sorting (extinction), and failure to speciate can also influence host-parasite assemblages. Using mitochondrial and nuclear protein-coding DNA sequences, I reconstructed the phylogeny of ectoparasitic toucan chewing lice in the Austrophilopterus cancellosus subspecies complex and compared this phylogeny with the phylogeny of the hosts, the Ramphastos toucans, to reconstruct the history of coevolutionary events in this host-parasite assemblage. Three salient findings emerged. First, reconstructions of host and louse phylogenies indicate that they do not branch in parallel, and their cophylogenetic history shows little or no significant cospeciation. Second, members of monophyletic Austrophilopterus toucan louse lineages are not necessarily restricted to monophyletic host lineages. Often, closely related lice are found on more distantly related but sympatric toucan hosts. Third, the geographic distribution of the hosts apparently plays a role in the speciation of these lice. These results suggest that for some louse lineages biogeography may be more important than host associations in structuring louse populations and species, particularly when host life history (e.g., hole nesting) or parasite life history (e.g., phoresis) might promote frequent host switching events between syntopic host species. These findings highlight the importance of integrating biogeographic information into cophylogenetic studies.  相似文献   

10.
Moyer  Brett R.  Gardiner  David W.  Clayton  Dale H. 《Oecologia》2002,131(2):203-210

Animals possess a variety of well-documented defenses against ectoparasites, including morphological, behavioral, and immune responses. Another possible defense that has received relatively little attention is the shedding of the host's exterior. The conventional wisdom is that ectoparasite abundance is reduced when birds molt their feathers, mammals molt their hair, and reptiles shed their skin. We carried out an experimental test of this hypothesis for birds by manipulating molt in feral pigeons (Columba livia) infested with feather lice (Phthiraptera: Ischnocera). We used two standard methods, visual examination and body washing, to quantify the abundance of lice on the birds. The visual data indicated a significant effect of molt on lice. However, the more robust body washing method showed that molt had no effect on louse abundance. Two factors caused visual examination to underestimate the number of lice on molting birds. First, molt replaces worn feathers with new, lush plumage that obscures lice during visual examination. Second, we discovered that lice actively seek refuge inside the sheath that encases developing feathers, where the lice cannot be seen. The apparent reduction in louse abundance caused by these factors may account for the conventional wisdom that feather molt reduces ectoparasite abundance in birds. In light of our experimental results, we argue that it is necessary to reinterpret the conclusions of previous studies that were based on observational data. Additional experiments are needed to test whether shedding of the host's exterior reduces ectoparasites in other birds, mammals, and reptiles, similar to the impact of facultative leaf drop on herbivorous insects on trees.

  相似文献   

11.
Large-bodied species of hosts often harbor large-bodied parasites, a pattern known as Harrison's rule. Harrison's rule has been documented for a variety of animal parasites and herbivorous insects, yet the adaptive basis of the body-size correlation is poorly understood. We used phylogenetically independent methods to test for Harrison's rule across a large assemblage of bird lice (Insecta: Phthiraptera). The analysis revealed a significant relationship between louse and host size, despite considerable variation among taxa. We explored factors underlying this variation by testing Harrison's rule within two groups of feather-specialist lice that share hosts (pigeons and doves). The two groups, wing lice (Columbicola spp.) and body lice (Physconelloidinae spp.), have similar life histories, despite spending much of their time on different feather tracts. Wing lice showed strong support for Harrison's rule, whereas body lice showed no significant correlation with host size. Wing louse size was correlated with wing feather size, which was in turn correlated with overall host size. In contrast, body louse size showed no correlation with body feather size, which also was not correlated with overall host size. The reason why body lice did not fit Harrison's rule may be related to the fact that different species of body lice use different microhabitats within body feathers. More detailed measurements of body feathers may be needed to explore the precise relationship of body louse size to relevant components of feather size. Whatever the reason, Harrison's rule does not hold in body lice, possibly because selection on body size is mediated by community-level interactions between body lice.  相似文献   

12.
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host‐specific feather lice (Phthiraptera: Ischnocera) that co‐occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, “wing lice” (Columbicola columbae) disperse phoretically by “hitchhiking” on pigeon flies (Diptera: Hippoboscidae), while “body lice” (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host–parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host–parasite cospeciation.  相似文献   

13.

Background

Repeated adaptive radiations are evident when phenotypic divergence occurs within lineages, but this divergence into different forms is convergent when compared across lineages. Classic examples of such repeated adaptive divergence occur in island (for example, Caribbean Anolis lizards) and lake systems (for example, African cichlids). Host-parasite systems in many respects are analogous to island systems, where host species represent isolated islands for parasites whose life cycle is highly tied to that of their hosts. Thus, host-parasite systems might exhibit interesting cases of repeated adaptive divergence as seen in island and lake systems. The feather lice of birds spend their entire life cycle on the body of the host and occupy distinct microhabitats on the host: head, wing, body and generalist. These microhabitat specialists show pronounced morphological differences corresponding to how they escape from host preening. We tested whether these different microhabitat specialists were a case of repeated adaptive divergence by constructing both morphological and molecular phylogenies for a diversity of avian feather lice, including many examples of head, wing, body and generalist forms.

Results

Morphological and molecular based phylogenies were highly incongruent, which could be explained by rampant convergence in morphology related to microhabitat specialization on the host. In many cases lice from different microhabitat specializations, but from the same group of birds, were sister taxa.

Conclusions

This pattern indicates a process of repeated adaptive divergence of these parasites within host group, but convergence when comparing parasites across host groups. These results suggest that host-parasite systems might be another case in which repeated adaptive radiations could be relatively common, but potentially overlooked, because morphological convergence can obscure evolutionary relationships.  相似文献   

14.
Linking coevolutionary history to ecological process: doves and lice   总被引:3,自引:0,他引:3  
Abstract Many host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment. In some cases, microevolutionary differentiation is apparent on top of host specificity, as evidenced by significant parasite population genetic structure among host populations. Ecological barriers responsible for specificity and genetic structure can, in principle, reinforce macroevolutionary processes that generate congruent host-parasite phylogenies. However, few studies have explored both the micro- and macroevolutionary ramifications of close association in a single host-parasite system. Here we compare the macroevolutionary histories of two genera of feather lice (Phthiraptera: Ischnocera) that both parasitize New World pigeons and doves (Aves: Columbiformes). Earlier work has shown that dove body lice (genus Physconelloides ) are more host specific and have greater population genetic structure than dove wing lice ( Columbicola ). We reconstructed phylogenies for representatives of the two genera of lice and their hosts, using nuclear and mitochondrial DNA sequences. The phylogenies were well resolved and generally well supported. We compared the phylogenies of body lice and wing lice to the host phylogeny using reconciliation analyses. We found that dove body lice show strong evidence of cospeciation whereas dove wing lice do not. Although the ecology of body and wing lice is very similar, differences in their dispersal ability may underlie these joint differences in host specificity, population genetic structure, and coevolutionary history.  相似文献   

15.
The wing louse genus Lunaceps, is the most speciose chewing louse (Phthiraptera) genus inhabiting sandpipers (Charadriiformes: Calidrinae) and is known from almost all sandpiper species. The hosts follow specific flyways from the Arctic breeding grounds to wintering locations in the southern hemisphere, and often form large mixed-species flocks during migration and wintering. We estimated a phylogeny of Lunaceps based on three mitochondrial loci, supporting monophyly of the genus but revealing extensive paraphyly at the species level. We also evaluated the relative importance of flyway differentiation (same host species having different lice along different flyways) and flyway homogenisation (different host species having the same lice along the same flyway). We found that while the lice of smaller sandpipers and stints show some evidence of flyway homogenisation, those of larger sandpipers do not. No investigated host species migrating along more than one flyway showed any evidence of flyway differentiation. The host-parasite associations within Lunaceps are in no case monophyletic, rejecting strict cospeciation.  相似文献   

16.
Host–symbiont relationships are ubiquitous in nature, yet evolutionary and ecological processes that shape these intricate associations are often poorly understood. All orders of birds engage in symbioses with feather mites, which are ectosymbiotic arthropods that spend their entire life on hosts. Due to their permanent obligatory association with hosts, limited dispersal and primarily vertical transmission, we hypothesized that the cospeciation between feather mites and hosts within one avian family (Parulidae) would be perfect (strict cospeciation). We assessed cophylogenetic patterns and tested for congruence between species in two confamiliar feather mite genera (Proctophyllodidae: Proctophyllodes, Amerodectes) found on 13 species of migratory warblers (and one other closely related migratory species) in the eastern United States. Based on COI sequence data, we found three Proctophyllodes lineages and six Amerodectes lineages. Distance‐ and event‐based cophylogenetic analyses suggested different cophylogenetic trajectories of the two mite genera, and although some associations were significant, there was little overall evidence supporting strict cospeciation. Host switching is likely responsible for incongruent phylogenies. In one case, we documented prairie warblers Setophaga discolor harboring two mite species of the same genus. Most interestingly, we found strong evidence that host ecology may influence the likelihood of host switching occurring. For example, we documented relatively distantly related ground‐nesting hosts (ovenbird Seiurus aurocapilla and Kentucky warbler Geothlypis formosa) sharing a single mite species, while other birds are shrub/canopy or cavity nesters. Overall, our results suggest that cospeciation is not the case for feather mites and parulid hosts at this fine phylogenetic scale, and raise the question if cospeciation applies for other symbiotic systems involving hosts that have complex life histories. We also provide preliminary evidence that incorporating host ecological traits into cophylogenetic analyses may be useful for understanding how symbiotic systems have evolved.  相似文献   

17.
Fitness consequences of ectoparasitism are expressed over the lifetime of their hosts in relation to variation in composition and abundance of the entire ectoparasite community and across all host life history stages. However, most empirical studies have focused on parasite species-specific effects and only during some life history stages. We conducted a systematic, year-long survey of an ectoparasite community in a wild population of house finches Carpodacus mexicanus Müller in south-western Arizona, with a specific focus on ecological and behavioral correlates of ectoparasite prevalence and abundance. We investigated five ectoparasite species: two feather mite genera – both novel for house finches – Strelkoviacarus (Analgidae) and Dermoglyphus (Dermoglyphidae), the nest mite Pellonyssus reedi (Macronyssidae), and the lice Menacanthus alaudae (Menoponidae) and Ricinus microcephalus (Ricinidae). Mite P. reedi and louse Menacanthus alaudae abundance peaked during host breeding season, especially in older birds, whereas feather mite abundance peaked during molt. Overall, breeding birds had more P. reedi than non-breeders, molting males had greater abundance of feather mites than molting females and non-molting males, and young males had more feather mites than older males. We discuss these results in relation to natural history of ectoparasites under study and suggest that ectoparasites might synchronize their life cycles to those of their hosts. Pronounced differences in relative abundance of ectoparasite species among host's life history stages have important implications for evolution of parasite-specific host defenses.  相似文献   

18.
D. H. Clayton  B. A. Walther 《Oikos》2001,94(3):455-467
Host‐parasite systems can be powerful arenas in which to explore factors influencing community structure. We used a comparative approach to examine the influence of host ecology and morphology on the diversity of chewing lice (Insecta: Phthiraptera) among 52 species of Peruvian birds. For each host species we calculated two components of parasite diversity: 1) cumulative species richness, and 2) mean abundance. We tested for correlations between these parasite indices and 13 host ecological and morphological variables. Host ecological variables included geographic range size, local population density, and microhabitat use. Host morphological variables included body mass, plumage depth, and standard dimensions of bill, foot and toenail morphology, all of which could influence the efficiency of anti‐parasite grooming. Data were analysed using statistical and comparative methods that control for sampling effort and host phylogeny. None of the independent host variables correlated with louse species richness when treated as a dependent variable. When richness was treated as an independent variable, however, it was positively correlated with mean louse abundance. Host body mass was also positively correlated with mean louse abundance. When louse richness and host body mass were held constant, mean louse abundance correlated negatively with the degree to which the upper mandible of the host's bill overhangs the lower mandible. This correlation suggests that birds with longer overhangs are better at controlling lice during preening. We propose a specific functional hypothesis in which preening damages lice by exerting a shearing force between the overhang and the tip of the lower mandible. This study is the first to suggest a parasite‐control function of such a detailed component of bill morphology across species. Avian biologists have traditionally focused almost exclusively on bills as tools for feeding. We suggest that the adaptive radiation of bill morphology should be reinterpreted with both preening and feeding in mind.  相似文献   

19.
Do phylogenies and branch lengths based on mitochondrial DNA (mtDNA) provide a reasonable approximation to those based on multiple nuclear loci? In the present study, we show widespread discordance between phylogenies based on mtDNA (two genes) and nuclear DNA (nucDNA; six loci) in a phylogenetic analysis of the turtle family Emydidae. We also find an unusual type of discordance involving the unexpected homogeneity of mtDNA sequences across species within genera. Of the 36 clades in the combined nucDNA phylogeny, 24 are contradicted by the mtDNA phylogeny, and six are strongly contested by each data set. Two genera (Graptemys, Pseudemys) show remarkably low mtDNA divergence among species, whereas the combined nuclear data show deep divergences and (for Pseudemys) strongly supported clades. These latter results suggest that the mitochondrial data alone are highly misleading about the rate of speciation in these genera and also about the species status of endangered Graptemys and Pseudemys species. In addition, despite a strongly supported phylogeny from the combined nuclear genes, we find extensive discordance between this tree and individual nuclear gene trees. Overall, the results obtained illustrate the potential dangers of making inferences about phylogeny, speciation, divergence times, and conservation from mtDNA data alone (or even from single nuclear genes), and suggest the benefits of using large numbers of unlinked nuclear loci. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 445–461.  相似文献   

20.
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号