首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular senescence in cancer and aging   总被引:17,自引:0,他引:17  
Collado M  Blasco MA  Serrano M 《Cell》2007,130(2):223-233
Cellular senescence, a state of irreversible growth arrest, can be triggered by multiple mechanisms including telomere shortening, the epigenetic derepression of the INK4a/ARF locus, and DNA damage. Together these mechanisms limit excessive or aberrant cellular proliferation, and so the state of senescence protects against the development of cancer. Recent evidence suggests that cellular senescence also may be involved in aging.  相似文献   

2.
The program of cellular senescence is involved in both the G1 and G2 phase of the cell cycle, limiting G1/S and G2/M progression respectively, and resulting in prolonged cell cycle arrest. Cellular senescence is involved in normal wound healing. However, multiple organs display increased senescent cell numbers both during natural aging and after injury, suggesting that senescent cells can have beneficial as well as detrimental effects in organismal aging and disease. Also in the kidney, senescent cells accumulate in various compartments with advancing age and renal disease. In experimental studies, forced apoptosis induction through the clearance of senescent cells leads to better preservation of kidney function during aging. Recent groundbreaking studies demonstrate that senescent cell depletion through INK-ATTAC transgene-mediated or cell-penetrating FOXO4-DRI peptide induced forced apoptosis, reduced age-associated damage and dysfunction in multiple organs, in particular the kidney, and increased performance and lifespan. Senescence is also involved in oncology and therapeutic depletion of senescent cells by senolytic drugs has been studied in experimental and human cancers. Although studies with senolytic drugs in models of kidney injury are lacking, their dose limiting side effects on other organs suggest that targeted delivery might be needed for successful application of senolytic drugs for treatment of kidney disease. In this review, we discuss (i) current understanding of the mechanisms and associated pathways of senescence, (ii) evidence of senescence occurrence and causality with organ injury, and (iii) therapeutic strategies for senescence depletion (senotherapy) including targeting, all in the context of renal aging and disease.  相似文献   

3.
4.
Cellular senescence is an anti-cancer mechanism and may contribute to organismal aging. A change in paradigm has been proposed that cellular senescence may reduce cancer mortality rather than promote it late in life, and thus positively contributes to longevity in organisms with renewable tissues as a common mechanism across the species.  相似文献   

5.
《Current biology : CB》2022,32(10):R448-R452
  相似文献   

6.
细胞衰老与肿瘤发生   总被引:3,自引:0,他引:3  
胡兵  安红梅  沈克平 《生命科学》2008,20(3):447-449
细胞衰老(cell senescence)是指细胞在信号转导作用下不可逆地脱离细胞周期并丧失增殖能力后进入的一种相对稳定的状态。细胞衰老有增殖衰老与早熟衰老两种形式:增殖衰老由端粒缩短激发的信号转导激发,与TP53/CDKN1a(p21^WAF-1/Cip1)/pRB/E2F信号通路密切相关;早熟衰老由细胞内在或外在急慢性应激信号引发,与TP53/CDKN1a(p21^WAF-1/Cip1)/pRB/E2F或CDKN2a(p16^ink4A)/pRB/E2F信号通路相关。目前研究已经证实早熟衰老是细胞在癌变过程中的天然屏障,是继DNA修复、细胞凋亡后的第三大细胞内在抗癌机制,在机体防止肿瘤形成中起重要作用。  相似文献   

7.
8.
Cellular senescence, an irreversible cell-cycle arrest, reflects a safeguard program that limits the proliferative capacity of the cell exposed to endogenous or exogenous stress signals. A number of recent studies have clarified that an acutely inducible form of cellular senescence may act in response to oncogenic activation as a natural barrier to interrupt tumorigenesis at a premalignant level. Paralleling the increasing insights into premature senescence as a tumor suppressor mechanism, a growing line of evidence identifies cellular senescence as a critical effector program in response to DNA damaging chemotherapeutic agents. This review discusses molecular pathways to stress-induced senescence, the interference of a terminal arrest condition with clinical outcome, and the critical overlap between premature senescence and apoptosis as both tumor suppressive and drug-responsive cellular programs.  相似文献   

9.
Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.  相似文献   

10.
Cellular senescence and chromatin structure   总被引:1,自引:0,他引:1  
Funayama R  Ishikawa F 《Chromosoma》2007,116(5):431-440
Cellular senescence is characterized by stable cell cycle arrest that is triggered by various forms of stress stimuli. Senescent cells show a series of morphological and physiological alterations including a flat and enlarged morphology, an increase in acidic β-galactosidase activity, chromatin condensation, and changes in gene expression pattern. These features are not observed in proliferating cells or quiescent cells in vitro. Using these senescence markers, cellular senescence has been shown to occur in benign or premalignant lesions but not in malignant lesions and to act as a tumor-suppressing mechanism in vivo. The onset and maintenance of the senescent state are regulated by two tumor suppressor proteins, p53 and Rb, which mediate senescence signals through p38 mitogen-activated protein kinase and cyclin-dependent kinase inhibitors. Alterations of chromatin structure are believed to contribute to the irreversible nature of the senescent state. Senescent cells form characteristic heterochromatin structure called senescence-associated heterochromatic foci (SAHFs), which may repress the expression of proliferation-promoting genes, such as E2F target genes. Recent studies have provided molecular insights into the structure and the mechanism of SAHF formation. In this paper, we review the role of cellular senescence in tumor suppression in vivo and the molecular mechanism of stable growth arrest in senescent cells, focusing on the special form of heterochromatin, SAHFs.  相似文献   

11.
Lou Z  Chen J 《Experimental cell research》2006,312(14):2641-2646
Aging is a complex process that results in functional decline and mortality of the organisms. On the cellular lever, cellular senescence has been used as a model for aging. Therefore, understanding cellular senescence has important health implications. Initial observations suggest that cellular senescence is the result of telomere shortening. Recent findings suggest that cellular senescence could be triggered by DNA damage. In fact, both telomere shortening and DNA-damage-induced cellular senescence share a common mechanism, the DNA damage response pathway. This review will discuss the link between DNA repair defects and cellular senescence.  相似文献   

12.
13.
The field of research on cellular senescence experienced a rapid expansion from being primarily focused on in vitro aspects of aging to the vast territories of animal and clinical research. Cellular senescence is defined by a set of markers, many of which are present and accumulate in a gradual manner prior to senescence induction or are found outside of the context of cellular senescence. These markers are now used to measure the impact of cellular senescence on aging and disease as well as outcomes of anti‐senescence interventions, many of which are at the stage of clinical trials. It is thus of primary importance to discuss their specificity as well as their role in the establishment of senescence. Here, the presence and role of senescence markers are described in cells prior to cell cycle arrest, especially in the context of replicative aging and in vivo conditions. Specifically, this review article seeks to describe the process of “cellular aging”: the progression of internal changes occurring in primary cells leading to the induction of cellular senescence and culminating in cell death. Phenotypic changes associated with aging prior to senescence induction will be characterized, as well as their effect on the induction of cell senescence and the final fate of cells reviewed. Using published datasets on assessments of senescence markers in vivo, it will be described how disparities between quantifications can be explained by the concept of cellular aging. Finally, throughout the article the applicational value of broadening cellular senescence paradigm will be discussed.  相似文献   

14.
15.
16.
Cellular senescence is a state of stable proliferation arrest of cells. The senescence pathway has many beneficial effects and is seen to be activated in damaged/stressed cells, as well as during embryonic development and wound healing. However, the persistence and accumulation of senescent cells in various tissues can also impair function and have been implicated in the pathogenesis of many age‐related diseases. Osteoarthritis (OA), a severely debilitating chronic condition characterized by progressive tissue remodeling and loss of joint function, is the most prevalent disease of the synovial joints, and increasing age is the primary OA risk factor. The profile of inflammatory and catabolic mediators present during the pathogenesis of OA is strikingly similar to the secretory profile observed in ‘classical’ senescent cells. During OA, chondrocytes (the sole cell type present within articular cartilage) exhibit increased levels of various senescence markers, such as senescence‐associated beta‐galactosidase (SAβGal) activity, telomere attrition, and accumulation of p16ink4a. This suggests the hypothesis that senescence of cells within joint tissues may play a pathological role in the causation of OA. In this review, we discuss the mechanisms by which senescent cells may predispose synovial joints to the development and/or progression of OA, as well as touching upon various epigenetic alterations associated with both OA and senescence.  相似文献   

17.
《Reproductive biology》2023,23(1):100734
Cellular senescence (CS) is defined as a state of terminal proliferation arrest accompanied by morphological alterations, pro-inflammatory phenotype, and metabolic changes. In recent years, the implications of senescence in numerous physiological and pathological conditions such as development, tissue repair, aging, or cancer have been evident. Some inductors of senescence are tissue repair pathways, telomere shortening, DNA damage, degenerative disorders, and wound healing. Lately, it has been demonstrated that CS plays a decisive role in the development and progression of healthy pregnancy and labor. Premature maternal-fetal tissues senescence (placenta, choriamniotic membranes, and endothelium) is implicated in many adverse pregnancy outcomes, including fetal growth restriction, preeclampsia, preterm birth, and intrauterine fetal death. Here we discuss cellular senescence and its association with normal pregnancy development and adverse pregnancy outcomes. Current evidence allows us to establish the relevance of CS in processes associated with the appropriate development of placentation, the progression of pregnancy, and the onset of labor; likewise, it allows us to understand the undeniable participation of CS deregulation in pathological processes associated with pregnancy.  相似文献   

18.
Cellular senescence is, essentially, a permanent proliferation arrest induced by various cellular stresses or inappropriate stimuli. This arrest, which is associated with dramatic changes in cell morphology, metabolism and gene expression, involves a complex signalling network aiming at stable inactivation of CDKs, major cell cycle regulators. Notably, several tumour suppressors, such as p53, pRb or p16(Ink4a), play key roles both in the initiation of the senescence program and in its maintenance, which often involves epigenetic changes. While having widely recognized roles in tumour suppression and wound healing, senescence, like the roman god Janus, recently revealed another darker face. Mostly due to altered secretion phenotype favouring inflammation, senescent cells strongly influence surrounding tissue contributing to the development of age-related pathologies, including cancer.  相似文献   

19.
20.
Martins AC 《PloS one》2011,6(9):e24328
Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号