首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vivo metabolism of an antibacterial nitrofuran, furazolidone [N-(5-nitro-2-furfurylidene)-3-amino-2-oxazolidone] was investigated. When the nitrofuran was administered orally to rats, two new-type nitrofuran metabolites, N-(4-carboxy-2-oxobutylideneamino)-2-oxazolidone and alpha-ketoglutaric acid, were isolated from the urine, together with 3-(4-cyano-2-oxobutylideneamino)-2-oxazolidone and N-(5-acetamido-2-furfurylidene)-3-amino-2-oxazolidone. In addition, the present study showed that the corresponding aminofuran was an intermediate in the conversion of furazolidone to these metabolites.  相似文献   

2.
In vitro metabolism of furazolidone (N-(5-nitro-2-furfuryliden)-3-amino-2-oxazolidone) was investigated by using milk xanthine oxidase and rat liver 9000g supernatant. As a result, a new type of reduction product was isolated as one of the main metabolites from the incubation mixture and it was tentatively identified as 2,3-dihydro-3-cyanomethyl-2-hydroxyl-5-nitro-1a, 2-di(2-oxo-oxazolidin-3-yl)iminomethyl-furo[2,3- b]furan. In addition, the present study demonstrated the formation of N-(5-amino-2-furfurylidene)-3-amino-2-oxazolidone as a minor metabolite of nitrofuran in a milk xanthine oxidase system. The aminofuran derivative was easily degraded by milk xanthine oxidase under aerobic, but not anaerobic, conditions. The degradation appears to be due to superoxide anion radicals, hydroxyl radicals, and/or singlet oxygen, which are produced in this enzyme system.  相似文献   

3.
Previous studies in our laboratory had demonstrated that addition of alpha-naphthoflavone (ANF) to lymphocytes from smokers or polychlorinated biphenyls (PCB)s-exposed individuals caused an increase in sister chromatid exchange (SCE) frequency whereas lymphocytes from controls were relatively unaffected. In order to investigate the mechanism responsible, metabolism of ANF by uninduced and 2,3,7,8-tetrachlorodibenzodioxin (TCDD)-induced microsomes was studied as a function of microsomal protein concentration and incubation time. Nonpolar metabolites were analyzed and the amount of conjugated (polar) and protein-bound metabolites determined. The initial ANF-metabolism rate was 10-fold higher in TCDD-induced microsomes (4.9 +/- 0.6 nmol/min per mg TCDD-induced microsomal protein vs. 0.5 +/- 0.2 nmol/min per mg uninduced microsomal protein) than in uninduced microsomes. Moreover, uninduced microsomes no longer metabolize ANF after 30-40 min while TCDD-induced microsomes metabolize ANF for longer than 2 h or until all the ANF is gone. In addition to the metabolites formed by uninduced microsomes [7,8-dihydro-7,8-dihydroxy-ANF (7,8-dihydrodiol); 5,6-dihydro-5,6-dihydroxy-ANF (5,6-dihydrodiol); 5,6-oxide-ANF and 6-hydroxy-ANF], TCDD-induced microsomes from unidentified metabolites. When TCDD-induced microsomes and 40 microM ANF were added to Chinese hamster ovary (CHO) cells, we found a correlation between the concentration of 5,6-oxide-ANF and clastogenicity to CHO cells. However, purified 5,6-oxide-ANF did not induce SCEs in CHO cells in the absence or presence of TCDD-induced microsomes. However, a minor metabolite (identified as the 9,10-dihydro-9,10-dihydroxy-ANF by acid dehydration) formed with TCDD-induced microsomes produces clastogenicity in CHO cells. These data indicate that a minor metabolite of ANF is a potent clastogen which suggests that this metabolite may be responsible for the ANF-mediated increases in SCE frequency in lymphocytes from smokers or PCB-exposed individuals.  相似文献   

4.
Incubation of [14C]benzene or [14C]phenol with liver microsomes from untreated rats, in the presence of a NADPH-generating system, gave rise to irreversible binding of metabolites to microsomal macromolecules. For both substrates this binding was inhibited by more than 50% by addition of superoxide dismutase to the incubation mixtures. The decrease in binding was compensated for by accumulation of [14C]hydroquinone, indicating superoxide-mediated oxidation of hydroquinone as one step in the activation of benzene to metabolites binding to microsomal macromolecules. Since our previous work had shown that binding occurred mainly with protein rather than ribonucleic acid and was virtually completely prevented by glutathione, suggesting identity of metabolite(s) responsible for binding to protein and glutathione, a conjugate was chemically prepared from p-benzoquinone and reduced glutathione (GSH) and identified by field desorption mass spectrometry (FDMS) as 2-(S-glutathionyl) hydroquinone. Microsomal incubations, containing an NADPH-generating system, with benzene, phenol, hydroquinone or p-benzoquinone in the presence of [3H]glutathione or, alternatively, with [14C]benzene or [14C]phenol in the presence of unlabeled glutathione, were performed. All of these incubations gave rise to a peak of radioactivity eluting from the high pressure liquid chromatograph (HPLC) at a retention time identical to that of the chemically prepared 2-(S-glutathionyl) hydroquinone, whilst microsomal incubation of catechol in the presence of [3H]glutathione led to a conjugate with a very different retention time which was not observed after incubation of benzene or phenol. The microsomal metabolites of p-benzoquinone, hydroquinone and phenol thus eluting from the HPLC were further identified as the 2-(S-glutathionyl) hydroquinone by field desorption mass spectrometry. The glutathione adduct formed from benzene during microsomal activation eluted from HPLC with the same retention time and its mass spectrum also contained the molecular ion (MH+) (m/e 416) of this conjugate as an intense peak, but the fragmentation patterns did not allow definite assignments probably due to the considerably smaller amounts of ultimate reactive metabolites formed from this pre-precursor and thus relatively larger amounts of impurities.The results indicate that rat liver microsomes activate benzene via phenol and hydroquinone to p-benzosemiquinone and/or p-benzoquinone as quantitatively important reactive metabolites.  相似文献   

5.
X L Lu  S K Yang 《Chirality》1990,2(1):1-9
Metabolism of halazepam [7-chloro-1,3-dihydro-5-phenyl-1-(2,2,2-trifluoroethyl)-2H-1,4-benzod iazepin- 2-one, HZ] was studied by incubation with liver microsomes prepared from untreated, phenobarbital (PB)-treated, and 3-methylcholanthrene (3MC)-treated male Sprague-Dawley rats. Metabolites of HZ were separated by normal-phase HPLC. Relative rates of HZ metabolism by liver microsomes prepared from untreated and treated rats were PB-treated much greater than untreated greater than 3MC-treated at low concentration of microsomal enzymes (0.25 mg protein per ml of incubation mixture) and PB-treated much greater than 3MC-treated approximately untreated at high concentration of microsomal enzymes (2 mg protein per ml of incubation mixture). The relative amounts of major metabolites were found to be 3-hydroxy-HZ (3-OH-HZ) greater than N-desalkylhalazepam (NDZ, also known as N-desmethyldiazepam and nordiazepam) much greater than oxazepam (OX) for all three rat liver microsomal preparations and the distribution of metabolites was independent of microsomal enzyme concentrations. Enantiomers of 3-OH-HZ were resolved by HPLC on a Chiralcel OC column (cellulose trisphenylcarbamate coated on silica gel, particle size 10 microns). 3-OH-HZ enantiomeres have racemization half-lives of approximately 150 min in pH 4, 7.5, and 10 aqueous solutions. 3-OH-HZ formed in the metabolism of HZ by liver microsomes prepared from untreated and treated rats were found to have 3R/3S enantiomer ratios of 37/63 (untreated), 55/45 (PB-treated), and 36/64 (3MC-treated), respectively. N-dealkylation of 3-OH-HZ by liver microsomes from PB-treated rats was substrate enantioselective; the 3R-enantiomer was N-dealkylated faster than 3S-enantiomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The mechanism of the formation of 4-hydroxynonenal through the NADPH-linked microsomal lipid peroxidation was investigated. The results were as follows: 4-hydroxynonenal arises exclusively from arachidonic acid contained in the polar phospholipids, neither arachidonic acid of the neutral lipids nor linoleic acid of the polar or neutral lipids are substrates for 4-hydroxynonenal generation. This finding results from the estimation of the specific radioactivity of 4-hydroxynonenal produced by microsomes prelabelled in vivo with [U-14C]arachidonic acid. Phospholipid-bound 15-hydroperoxyarachidonic acid would have the structural requirements needed for 4-hydroxynonenal (CH3-(CH2)4-CH(OH)-CH=CH-CHO). Microsomes supplemented with 15-hydroperoxyarachidonic acid and NADPH, ADP/iron converted only minimal amounts (0.6 mol%) of 15-hydroperoxyarachidonic acid into 4-hydroxynonenal; similarly, 15-hydroperoxyarachidonic acid incubated at pH 7.4 in the presence of ascorbate/iron yielded only small amounts of 4-hydroxynonenal with a rate orders of magnitude below that observed with microsomes. Phospholipid-bound 15-hydroperoxyarachidonic acid is therefore not a likely intermediate in the reaction pathway leading to 4-hydroxynonenal. The rate of 4-hydroxynonenal formation is highest during the very initial phase of its formation and the onset does not show a lag phase, suggesting a transient intermediate predominantly formed during the early phase of microsomal lipid peroxidation. After 60 min of incubation, 204 nmol polyunsaturated fatty acids (20 nmol 18:2, 143 nmol 20:4, 41 nmol 22:6) were lost per mg microsomal protein and the incubation mixture contained 206 nmol lipid peroxides, 71.6 nmol malonic dialdehyde and 4.6 nmol 4-hydroxynonenal per mg protein. Under artificial conditions (pH 1.0, ascorbate/iron, 20 h of incubation) not comparable to the microsomal peroxidation system, 15-hydroperoxyarachidonic acid can be decomposed in good yields (15 mol%) into 4-hydroxynonenal. Autoxidation of arachidonic acid in the presence of ascorbate/iron gave after 25 h of incubation 2.8 mol% (pH 7.4) and 1.5 mol% (pH 1.0) 4-hydroxynonenal. The most remarkable difference between the non-enzymic system and the enzymic microsomal system is that the latter forms 4-hydroxynonenal at a much higher rate.  相似文献   

7.
We have investigated the possible covalent binding of intermediates in prostaglandin (PG) biosynthesis to tissue macromolecules. Following incubation of arachidonic acid -1-[14]C (AA) with guinea pig lung microsomes, radioactivity was associated with the microsomal protein which was not dissociated from the protein by exhaustive solvent extraction. Furthermore, filtration of the protein complex through a Sephadex G-25 column failed to dissociate the radioactivity from the protein. This probably indicates covalent binding of AA metabolite(s) to protein. [3]H-PGE2, [3]H-PGF, and [3]H-thromboxane B2 (TXB2) did not show this high affinity binding to microsomal protein. The covalent binding of AA metabolites was greatly reduced in denatured microsomes and was inhibited by the addition of glutathione (GSH) or indomethacin to the incubation mixtures. Chromatographic analysis of the water layers obtained from microsomal incubations with either [3]H-AA or [3]H-GSH suggested the presence of one or more glutathione conjugates derived from AA. These studies indicate that most likely an intermediate formed during PG synthesis from AA covalently binds to tissue macromolecules. This covalent binding may be of physiological and pathological significance.  相似文献   

8.
We investigated the covalent binding of intermediates in prostaglandin biosynthesis to tissue macromolecules. Following incubation of [1-14C]arachidonic acid with the microsomal fraction from guinea pig lung, ram or bovine seminal vesicle, human platelets, rabbit kidney, or rat stomach fundus, the amount of covalent binding of arachidonic acid metabolites expressed as percentage of total arachidonic acid metabolized varied from tissue to tissue ranging from 3% in human platelets to 18.2% in ram seminal vesicles. In general, the thromboxane synthesizing tissues had less covalently bound metabolites than the other tissues. The amount of covalently bound metabolites was increased in the guinea pig lung microsomes when the thromboxane synthetase inhibitor, N-0164, was added to the incubation mixture. The covalent binding of arachidonic acid metabolite(s) was greatly reduced by the addition of glutathione to the incubation mixture. In addition to the covalently bound metabolites, water-soluble metabolites derived from arachidonic acid metabolism were also observed. The amount of water-soluble metabolites was small in each tissue except for the rat stomach fundus. In the rat stomach fundus the water-soluble metabolites accounted for over 50% of the total metabolites. Conditions which would tend to increase or decrease the levels of free prostaglandin endoperoxides during the incubation of arachidonic acid with the microsomes gave increased or decreased levels of covalent binding. Our data suggest that the prostaglandin endoperoxides are responsible for the covalent binding observed during prostaglandin biosynthesis. This covalent binding to tissue macromolecules may be of physiological and pathological significance.  相似文献   

9.
H Kappus  H M Bolt 《Steroids》1976,27(1):29-45
14,15-3H-Norethisterone-4 beta, 5 beta-epoxide, a metabolite of norethisterone, was incubated with several proteins and nucleic acids. After 30 min incubation 0.19 nmol of the epoxide were irreversibly bound per mg albumin which contains free sulfhydryl groups; proteins without SH-groups, such as concanavalin A, gamma-globulin, DNA and RNA, did not irreversibly bind norethisterone epoxide. A superoxide (O2) generating enzyme system comprised of xanthine oxidase and hypoxanthine was capable of catalyzing the irreversible binding of the parent compound, norethisterone, to albumin, indicating that an oxidation product was formed which reacted with the protein. When norethisterone epoxide was incubated for 60 min with hepatic microsomes of rats in absence of NADPH, about 2.0 nmol of the epoxide were irreversibly incorporated per mg microsomal protein. This binding was increased to 5.2 nmol by addition of a NADPH regenerating system. Addition of glutathione and cytosol decreased only the NADPH-dependent protein binding; phenobarbital pretreatment of rats induced this NADPH-dependent binding of norethisterone epoxide to microsomal protein by a factor of 2. In presence of NADPH, binding of the epoxide to microsomal protein depended on substrate concentration used. The results indicate that norethisterone epoxide is able to chemically react with proteins. In addition, hepatic microsomal enzymes convert the epoxide to another metabolite which also can react with proteins.  相似文献   

10.
The metabolism of [6,7-3H]ethinylestradiol [( 3H]EE2) by rat liver microsomes was studied in vitro. After incubation of [3H]EE2 with rat liver microsomes for 20 min, 90% of the substrate was metabolised and 18% of the 3H-labelled material irreversibly bound to microsomal protein. Ascorbic acid (1 mM) decreased irreversible binding of 3H and produced an accumulation of 2-hydroxyethinylestradiol (2OH-EE2), while mixed-function oxidase inhibitors (0.5 mM) decreased binding of 3H to protein by inhibiting EE2 2-hydroxylation. Addition of thiols gave water-soluble metabolites which were characterised as 1(4)-thioether derivatives of 2OH-EE2 by co-chromatography with synthetic products. The results are consistent with the hypothesis that the chemically reactive metabolite of EE2 formed in vitro is either a quinone or o-semiquinone derived from 2OH-EE2 [1].  相似文献   

11.
The microsomal metabolism of pentachlorophenol (PCP) was investigated, with special attention to the conversion dependent covalent binding to protein and DNA. The two metabolites detected were tetrachloro-1,2- and tetrachloro-1,4-hydroquinone. Microsomes from isosafrole (ISF)-induced rats were by far the most effective in catalyzing the reaction: the rate of conversion was increased 7-fold over control microsomes. All other inducers tested (hexachlorobenzene (HCB), phenobarbital (PB) and 3-methylcholanthrene (3MC) gave 2--3-fold increases over control. There are indications that the 1,2- and 1,4-isomers are produced in different ratio's by various cytochrome P-450 isoenzymes: Microsomes from PB- and HCB-treated rats produced the tetrachloro-1,4- and tetrachloro-1,2-hydroquinone in a ratio of about 2, while microsomes from rats induced with 3 MC and ISF showed a ratio of about 1.3. When PCP was incubated with microsomes from rats treated with HCB, a mixed type inducer of P-450, the ratio between formation of the 1,4- and 1,2-isomers decreased with increasing concentration of PCP, suggesting the involvement of at least two P-450 isoenzymes with different Km-values. The overall apparent Km-value for HCB-microsomes was 13 microM both for the formation of the soluble metabolites and the covalent binding to microsomal protein, suggesting both stem from the same reaction. The covalent binding could be inhibited by ascorbic acid and this inhibition was accompanied by an increase in formation of tetrachlorohydroquinones (TCHQ). Although a large variation was observed in rates of conversion between microsomes treated with different (or no) inducers, the rate of covalent binding to microsomal protein was remarkably constant. A conversion-dependent covalent binding to DNA was observed in incubations with added DNA which was 0.2 times the amount of binding to protein (37 pmol/mg DNA).  相似文献   

12.
The metabolism of testosterone (TEST), androstenedione (AD) and progesterone (PROG) was assessed in hepatic microsomal fractions from male sheep. Rates of total hydroxylation of each steroid were lower in sheep liver than in microsomes isolated from untreated male rat, guinea pig or human liver, 6 beta-Hydroxylation was the most important pathway of biotransformation of each of the three steroids (0.80, 0.89 and 0.43 nmol/min/mg protein for TEST, AD and PROG, respectively). Significant minor metabolites from TEST were the 2 beta-, 15 beta- and 15 alpha-alcohols (0.19, 0.22 and 0.17 nmol/min/mg microsomal protein, respectively). Apart from the 6 beta-hydroxysteroid, only the 21-hydroxy derivative was formed from PROG at a significant rate (0.27 nmol/min/mg protein). The 6 beta-alcohol was the only metabolite formed from AD at a rate greater than 0.1 nmol/min/mg protein. Antisera raised in rabbits to several rat hepatic microsomal P450s were assessed for their capacity to modulate sheep microsomal TEST hydroxylation. Anti-P450 IIIA isolated from phenobarbital-induced rat liver effectively inhibited TEST hydroxylation at the 2 beta-, 6 beta-, 15 alpha- and 15 beta-positions (by 31-56% when incubated with microsomes at a ratio of 5 mg IgG/mg protein). IgG raised against rat P450 IIC11 and IIB1 inhibited the formation of some of the minor hydroxysteroid metabolites but did not decrease the rate of TEST 6 beta-hydroxylation. Western immunoblot analysis confirmed the cross-reactivity of anti-rat P450 IIIA with an antigen in sheep hepatic microsomes; anti-IIC11 and anti-IIB1 exhibited only weak immunoreactivity with proteins in these fractions. Considered together, the present findings indicate that, as is the case in many mammalian species, 6 beta-hydroxylation is the principal steroid biotransformation pathway of male sheep liver. Evidence from immunoinhibition and Western immunoblot experiments strongly implicate the involvement of a P450 from the IIIA subfamily in ovine steroid 6 beta-hydroxylation.  相似文献   

13.
The purpose of the present study was to test the hypothesis that rat prostate microsomes contain a single cytochrome P450 enzyme responsible for the conversion of 5 alpha-androstane-3 beta,17 beta-diol to a series of trihydroxylated products. The three major metabolites formed by in vitro incubation of 5 alpha-[3H]androstane-3 beta,17 beta-diol with rat prostate microsomes were apparently 5 alpha-androstane-3 beta,6 alpha,17 beta-triol, 5 alpha-androstane-3 beta,7 alpha,17 beta-triol, and 5 alpha-androstane-3 beta,7 beta,17 beta-triol, which were resolved and quantified by reverse-phase HPLC with a flow through radioactivity detector. The ratio of the three metabolites remained constant as a function of incubation time, microsomal protein concentration, ionic strength, and substrate concentration. The ratio of the three metabolites was dependent on pH, apparently because the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol shifted from the 6 alpha- to the 7 alpha-position with increasing pH (6.8-8.0). The V(max) values were 380, 160, and 60 pmol/mg microsomal protein/min for the rate of 6 alpha-, 7 alpha-, and 7 beta-hydroxylation, respectively. Similar Km values (0.5-0.7 microM) were measured for enzymatic formation of all three metabolites, which suggests that formation of all three metabolites was catalyzed by a single, high-affinity enzyme. Testosterone, 5 alpha-dihydrotestosterone, and 5 alpha-androstane-3 alpha,17 beta-diol did not appreciably inhibit the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol, suggesting that this enzyme exhibits a high degree of substrate specificity. Formation of all three metabolites was inhibited by antibody against rat liver NADPH-cytochrome P450 reductase (85%) and by a 9:1 mixture of carbon monoxide and oxygen (60%). Several chemical inhibitors of cytochrome P450 enzymes, especially the antimycotic drug clotrimazole, also inhibited the formation of all three metabolites. Polyclonal antibodies that recognize liver cytochrome P450 1A, 2A, 2B, 2C, and 3A enzymes did not inhibit 5 alpha-androstane-3 beta,17 beta-diol hydroxylase activity. Overall, these results are consistent with the hypothesis that the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes is catalyzed by a single, high-affinity P450 enzyme. This cytochrome P450 enzyme appears to be structurally distinct from those in the 1A, 2A, 2B, 2C, and 3A gene families.  相似文献   

14.
Chlorotrifluoroethene, a potent nephrotoxin, is a substrate for the glutathione S-transferases present in the cytosolic and microsomal fractions of rat liver. The glutathione conjugate formed by both subcellular fractions has been identified as S-(2-chloro-1,1,2-trifluoroethyl)glutathione by 1H and 19F NMR and by secondary ion mass spectrometry. The conjugate formed by the cytosolic fraction is an equimolar mixture of two diastereomers, whereas the conjugate formed by the microsomal fraction is predominantly one diastereomer, as judged by the 19F NMR spectra. No evidence for the formation of S-(trihalovinyl)glutathione derivatives by an addition/elimination reaction was found. High-performance liquid chromatography was employed to measure the rates of glutathione conjugate formation in vitro. The rates of S-(2-chloro-1,1,2-trifluoroethyl)glutathione formation were 75-107 nmol min-1 (mg of protein)-1 and 151-200 nmol min-1 (mg of protein)-1 catalyzed by the cytosolic and microsomal fractions, respectively (measured at pH 7.4, 37 degrees C, with 5 mM glutathione). These results suggest that glutathione conjugation occurs at high rates in vivo to produce the highly nephrotoxic S-(2-chloro-1,1,2-trifluoroethyl)glutathione.  相似文献   

15.
The influence of membrane cholesterol content on 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase, EC 1.1.1.34) in rat liver microsomes was investigated. Microsomes were enriched in cholesterol by incubation with egg phosphatidylcholine-cholesterol vesicles and the nonspecific lipid transfer protein from rat liver. By this method, the microsomal cholesterol content was 2.5-fold enhanced up to final concentrations of 140 nmol cholesterol per mg microsomal protein. In another experiment, microsomes isolated from rats fed a cholesterol-rich diet were depleted of cholesterol by incubation with egg phosphatidylcholine vesicles and the transfer protein. Both cholesterol enrichment and depletion had virtually no effect on the microsomal HMG-CoA reductase activity. In another set of experiments, normal rat liver microsomes were incubated with human serum, resulting in a rise of microsomal cholesterol content. This was reflected in an increase of acyl-CoA:cholesterol acyltransferase activity but failed to have an effect on HMG-CoA reductase.  相似文献   

16.
A monoclonal antibody (30.1.2) to hog thyroid peroxidase was produced, purified, and characterized. The IgG of 30.1.2 formed an immune complex with the peroxidase in a 1:2 or 1:1 molar ratio depending on the IgG to antigen ratio in the incubation mixture. Immune complex formation did not inhibit the peroxidase activity, which was actually activated 2-fold in the 1:1 complex. Studies of the binding of the conjugate of the IgG or its Fab' with horseradish peroxidase to untreated and acetone-treated thyroid microsomes showed that the IgG conjugate could bind to only a very small portion of the total binding sites (thyroid peroxidase) present in untreated microsomes even after prolonged incubation. The binding of the Fab' conjugate to untreated microsomes, on the other hand, increased as the incubation time was increased, reaching 40% of the total sites after 20 h of incubation. These findings indicated that thyroid peroxidase is localized on the inner surface of the microsomal membranes and that the Fab' conjugate, but not the IgG conjugate, can slowly penetrate through the membrane barrier to reach the peroxidase. Immunohistochemical experiments using the Fab' conjugate as a probe revealed that most thyroid peroxidase in the thyroid gland is located in the endoplasmic reticulum and perinuclear cisternae of the follicular cell, although a small amount could occasionally be detected in the apical membrane including microvilli. In contrast to previous reports, no thyroid peroxidase could be found in other cellular structures such as Golgi apparatus and apical vesicles by the immunohistochemical technique employed.  相似文献   

17.
Plant constituents such as terpenes are major constituents of the essential oil in Eucalyptus sp. 1,8-Cineole and p-cymene (Terpenes present in high amounts in Eucalyptus leaves) are potential substrates for the CYP family of enzymes. We have investigated tolbutamide hydroxylase as a probe substrate reaction in both koala and terpene pretreated and control brushtail possum liver microsomes and examined inhibition of this reaction by Eucalyptus terpenes. The specific activity determined for tolbutamide hydroxylase in the terpene treated brushtails was significantly higher than that for the control animals (1865+/-334 nmol/mg microsomal protein per min versus 895+/-27 nmol/mg microsomal protein per min). The activity determined in koala microsomes was 8159+/-370 nmol/mg microsomal protein per min. Vmax values and Km values for the terpene treated possum, control, possum and koala were 1932-2225 nmol/mg microsomal protein per min and 0.80 0.81 mM; 1406-1484 nmol/mg microsomal protein per min and 0.87-0.92 mM and 5895-6403 nmol/mg microsomal protein per min and 0.067-0.071 mM, respectively. Terpenes were examined as potential inhibitors of tolbutamide hydroxylase activity. 1,8-Cineole was found to be a competitive inhibitor for the enzyme responsible for tolbutamide hydroxylation (Ki 15 microM) in the possum. In koala liver microsomes stimulation of tolbutamide hydroxylase activity was observed when concentrations of cineole were increased. Therefore, although inhibition was observed, the type of inhibition could not be determined.  相似文献   

18.
H E May  R Boose  D J Reed 《Biochemistry》1975,14(21):4723-4730
Liver microsomal hydroxylation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea was shown to occur on the cyclohexyl ring at positions 3 and 4. Four metabolites were isolated by selective solvent extraction and purifed by high-pressure liquid chromatography. cis-4-, trans-4-, cis-3-, and trans-3-OH derivatives of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea were synthesized and their chromatographic, mass spectral, and nuclear magnetic resonance characteristics matched those of the metabolites. The position of ring hydroxylation and the identity of each geometric isomer were established by nuclear magnetic resonance using a shift reagent in conjunction with spin decoupling techniques. Microsomes from rats pretreated with phenobarbital showed a sixfold increase in hydroxylation rate (19.5 vs. 3.3 nmol per mg per min). The induction was quite selective for cis-4 hydroxylation (19-fold); however, induction of trans-4 (threefold), cis-3 (threefold), and trans-3 (twofold) hydroxylation did occur. Quantitatively the cis-4-hydroxy metabolite was 67of the total product by phenobarbital-induced microsomes and 21% for normal microsomes. Microsomes from animals pretreated wit- 3-methyl-cholanthrene gave about the same rate and product distribution that normal microsomes gave. A mixture of 80% carbon monoxide-20% oxygen inhibited formation of all four hydroxy metabolites with the inhibition ranging from 55 to 78%.  相似文献   

19.
The aim of the current study was to investigate the metabolism of (-)-menthone by liver microsomes of humans. (-)-Menthone (1) was metabolized to (+)-neomenthol (2) (3-reduction) and 7-hydroxymenthone (3) by human liver microsomes. The metabolites formed were analyzed on GC and GC-MS. Kinetic analysis showed that K(m) and V(max) values for the metabolized (-)-menthone to respective (+)-neomenthol and 7-hydroxymenthone by liver microsomes of human sample HG70 were 0.37 mM and 4.91 nmol/min/mg protein and 0.07 mM and 0.71 nmol/min/mg protein.  相似文献   

20.
Metabolism of triphenylene by liver microsomes from control, phenobarbital(PB)-treated rats and 3-methylcholanthrene(MC)-treated rats as well as by a purified system reconstituted with cytochrome P-450c in the absence or presence of purified microsomal epoxide hydrolase was examined. Control microsomes metabolized triphenylene at a rate of 1.2 nmol/nmol of cytochrome P-450/min. Treatment of rats with PB or MC resulted in a 40% reduction and a 3-fold enhancement in the rate of metabolism, respectively. Metabolites consisted of the trans-1,2-dihydrodiol as well as 1-hydroxytriphenylene, and to a lesser extent 2-hydroxytriphenylene. The (-)-1R,2R-enantiomer of the dihydrodiol predominated (70 to 92%) under all incubation conditions. Incubation of racemic triphenylene 1,2-oxide with microsomal epoxide hydrolase produced dihydrodiol which was highly enriched (80%) in the (-)-1R,2R-enantiomer. Experiments with 18O-enriched water showed that attack of water was exclusively at the allylic 2-position of the arene oxide, indicating that the 1R,2S-enantiomer of the oxide was preferentially hydrated by epoxide hydrolase. Thiol trapping experiments indicated that liver microsomes from MC-treated rats produced almost exclusively (greater than 90%) the 1R,2S-enantiomer of triphenylene 1,2-oxide whereas liver microsomes from PB-treated rats formed racemic oxide. The optically active oxide has a half-life for racemization of only approximately 20 s under the incubation conditions. This study may represent the first attempt to address stereochemical consequences of a rapidly racemizing intermediary metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号