首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new source for the production of bioactive glucuronic acid oligosaccharides (GlcUAOs) from the depolymerization of green seaweed Ulva lactuca glucuronan (Algal glucuronan) has been investigated. Algal glucuronan purification was optimized by the acidic precipitation method which allowed us to separate the polysaccharide mixture extracted from the cell wall of Ulva lactuca using hot water containing sodium oxalate. A series of the GlcUAOs were obtained by enzyme degradation of algal glucuronan with a glucuronan lyase (GL) isolated from Trichoderma strain. The putative bioactive GlcUAOs generated were then purified by size-exclusion chromatography in gram quantity and characterized by 1H/13C NMR spectroscopy and ESI-Q/TOF-mass spectrometry.  相似文献   

2.
Sinorhizobium meliloti M5N1CS synthesizes a homopolymer of glucuronic acids beta-(1,4) linked and variably C2 and/or C3O-acetylated. To obtain beta-Delta-(4,5)-unsaturated oligoglucuronans, various acetylated forms of this bacterial polymer were cleaved by a Trichoderma sp. GL2 glucuronan lyase. Oligomers with polymerization degrees up to 8 were then produced, purified by liquid chromatography (size exclusion and anions exchange) and characterized using 1H NMR and ESI-Q/TOF-MS. Finally, the production (in gram quantity) of pure unsaturated oligoglucuronans non-acetylated (di- and trisaccharide) was investigated thanks to the complete depolymerization of deacetylated glucuronan.  相似文献   

3.
The regenerating activities of chemically modified anionic bacterial polysaccharides by O-sulfonation were investigated using a in vivo model of rat injured muscle regeneration. Glucuronan (GA), a linear homopolysaccharide of -->4)-beta-D-GlcpA-(1--> residues partially acetylated at the C-3 and/or the C-2 position, and glucoglucuronan (GGA), a linear heteropolysaccharide of -->3)-beta-D-GlcpA-(1-->4)-beta-D-Glcp-(1--> residues were sulfated. SO3-DMF sulfatation complex provided polysaccharides with different sulfur contents, however, a depolymerization occurred because we did not use large excess of pyridine to obtain pure modified polysaccharides. A regenerating activity on injured extensor digitorum longus (EDL) muscles on rats was obtained with these two sulfated anionic polymers. The position of sulfate groups on glucoglucuronan (primary or secondary alcohol) seems to have no influence on the biological activity by opposition to the degree of sulfatation both for the glucuronans and the glucoglucuronans. The yield of acetate groups in the glucuronan polymer modulated the specific activity.  相似文献   

4.
The effect of Mg2+ on glucuronan O -acetylation and production by the Rhizobium meliloti M5N1 CS strain was studied. Magnesium ion induced the production of a more acetylated exopolysaccharide containing a greater molar ratio of 2,3-di- O -acetyl residues.  相似文献   

5.
A glucuronan lyase (EC 4.2.2.14) was immobilized on a monolithic Convective Interaction Media (CIM((R))) disk. The immobilization yield was equal to 29% of the initial activity and 35% of the initial protein amount. Degradations of three glucuronans with various O-acetylation degrees were investigated and compared with degradations using free enzyme. The immobilized glucuronan lyase was inhibited by the O-acetylation degree like the free enzyme. (1)H NMR analyses were used to study the O-acetylation degree of oligoglucuronans and demonstrated that the average degrees of polymerization were inclusive between 4 and 13 after 24h of degradation. This first immobilization of a glucuronan lyase constitutes a new tool to produce oligoglucuronans.  相似文献   

6.
Acetylation determined by 1H-nuclear magnetic resonance spectroscopy and production of the glucuronan excreted by the Rhizobium meliloti M5N1 CS strain during cultivation in RCS medium with and without added magnesium salts have been studied. These salts induce an increase in the degree of substitution and the molar ratio of 2,3-di-O-acetyl residues. A decrease in production is observed after 75 h of fermentation as the magnesium salt concentration increases. The presence of manganese and sodium salts in the culture induces inhibition of exopolysaccharide (EPS) production. However, the structure of the EPS is similar to that of the EPS produced by standard fermentation, without modification in the degree of substitution.  相似文献   

7.
Process intensification has been widely used for many years in the mammalian biomanufacturing industry to increase productivity, agility and flexibility while reducing production costs. The most commonly used intensified processes are operated using a perfusion or fed-batch seed bioreactor enabling a higher than usual seeding density in the fed-batch production bioreactor. Hence, as part of the growth phase is shifted to the seed bioreactor, there is a lower split ratio, which increases the criticality of the seed bioreactor and could impact production performance. Therefore, such intensified processes should be designed and characterized for robust process scale-up. This research work is focused on intensified processes with high seeding density inoculated from seed bioreactor in fed-batch mode. The impact of the feeding strategy and specific power input (P/V) in the seed bioreactor and on the production step with two different cell lines (CL1 and CL2) producing two different monoclonal antibodies was investigated. Cell culture performance in the production bioreactor has been improved due to more stressful conditions for the cells in the seed bioreactor and the impact of the production bioreactor P/V on the production performance was limited. This is the first reported study highlighting a positive impact of cellular stress in seed bioreactors on intensified production bioreactor with the introduction of the “organized stress” concept.  相似文献   

8.
Embryogenic callus was induced from leaf explants of Eleutherococcus sessiliflorus cultured on Murashige and Skoog (MS) basal medium supplemented with 1 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), while no plant growth regulators were needed for embryo maturation. The addition of 1 mg l(-1) 2,4-D was needed to maintain the embryogenic culture by preventing embryo maturation. Optimal embryo germination and plantlet development was achieved on MS medium with 4 mg l(-1) gibberellic acid (GA(3)). Low-strength MS medium (1/2 and 1/3 strength) was more effective than full-strength MS for the production of normal plantlets with well-developed shoots and roots. The plants were successfully transferred to soil. Embryogenic callus was used to establish a suspension culture for subsequent production of somatic embryos in bioreactor. By inoculating 10 g of embryogenic cells (fresh weight) into a 3l balloon type bubble bioreactor (BTBB) containing 2l MS medium without plant growth regulators, 121.8 g mature somatic embryos at different developmental stages were harvested and could be separated by filtration. Cotyledonary somatic embryos were germinated, and these converted into plantlets following transfer to a 3l BTBB containing 2l MS medium with 4 mg l(-1) GA3. HPLC analysis revealed that the total eleutherosides were significantly higher in leaves of field grown plants as compared to different stages of somatic embryo. However, the content of eleutheroside B was highest in germinated embryos. Germinated embryos also had higher contents of eleutheroside E and eleutheroside E1 as compared to other developmental stages. This result indicates that an efficient protocol for the mass production of E. sessiliflorus biomass can be achieved by bioreactor culture of somatic embryos and can be used as a source of medicinal raw materials.  相似文献   

9.
Embryogenic cultures of a transformed Eschscholtzia californica cell line were carried out in a 11-L helical ribbon impeller bioreactor operated under various conditions to evaluate the performance of this equipment for somatic embryo (SE) production. All bioreactor cultures produced SE suspensions with maximum concentrations at least comparable to those obtained from flask control cultures ( approximately 8-13 SE . mL(-;1)). However, an increase of the mixingspeed, from 60 to 100 rpm, and low sparging rate ( approximately 0.05 VVM, k(L) a approximately 6.1 h(-;1)) for dissolved oxygen concentration (DO) control yielded poorer quality embryogenic cultures. The negative effects on SE production were attributed mainly to the low but excessive shear experienced by the embryogenic cells and/or embryoforming aggregates. High DO ( approximately 60% of air saturation) conditions favored undifferentrated biomass production and high nutrient uptake rates at the expense of the slower SE differentiation process in both flask and bioreactor cultures. Too low DO (-5-10%) inhibited biomass and SE production. The best production of SE ( approximately 44 SE . mL(-1) or approximately 757 SE . g dw(-1) . d(-1)) was achieved by operating the bioreactor at 60 rpm while controlling DO at approximately 20%by surface oxygenation only (0.05 VVM, k(L) a approximately 1.4 h(-;1)). This production was found to be a biomass production/growth-associated process and was mainly limited by the availability of extracellular phosphate, magnesium, nitrogen salts, and carbohydrates. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Maintaining redox balance is critical for the production of heterologous secondary metabolites, whereas on various occasions the native cofactor balance does not match the needs in engineered microorganisms. In this study, 7-dehydrocholesterol (7-DHC, a crucial precursor of vitamin D3) biosynthesis pathway was constructed in Saccharomyces cerevisiae BY4742 with endogenous ergosterol synthesis pathway blocked by knocking out the erg5 gene (encoding C-22 desaturase). The deletion of erg5 led to redox imbalance with higher ratio of cytosolic free NADH/NAD+ and more glycerol and ethanol accumulation. To alleviate the redox imbalance, a water-forming NADH oxidase (NOX) and an alternative oxidase (AOX1) were employed in our system based on cofactor regeneration strategy. Consequently, the production of 7-dehydrocholesterol was increased by 74.4% in shake flask culture. In the meanwhile, the ratio of free NADH/NAD+ and the concentration of glycerol and ethanol were reduced by 78.0%, 50.7% and 7.9% respectively. In a 5-L bioreactor, the optimal production of 7-DHC reached 44.49(±9.63) mg/L. This study provides a reference to increase the production of some desired compounds that are restricted by redox imbalance.  相似文献   

11.
Cellulase-free xylanase production by T. lanuginosus MH4 was investigated in a 3-litre stirred tank bioreactor under different agitation rates and an aeration rate of 1v/v/m. The cultivation time in the bioreactor was reduced significantly over that in shake culture conditions. A xylanase productivity of 0.1 mkat1–1h–1 was achieved on xylan in the bioreactor. This was nearly double to that obtained in shake culture. The agitation rates influenced both growth and enzyme secretion in the bioreactor. The highest level of biomass concentration and activities of both xylanase and -xylosidase were obtained at 150 revmin–1  相似文献   

12.
Biomass growth and ginsenoside production in cell suspension and adventitious roots of Panax ginseng C.A. Meyer cultures cultivated both in Erlenmayer flasks and a 3 dm3 bioreactor were studied. The maximum content of ginsenosides was found in the suspension culture cultivated in the bioreactor (4.34 % dry mass), however the saponin content was limited to two major ginsenosides, Rb1 and Rg1. The production of ginsenosides in adventitious roots was lower (1.45 or 1.72 % dry mass), nevertheless, the full range of ginsenosides was detected.This work was supported by 521/02/P064, COST 843.10, ME671 and Z4 055 905 projects.  相似文献   

13.
A glucuronan lyase extracted from Sinorhizobium meliloti strain M5N1CS was purified to homogeneity by anion-exchange chromatography. The purified enzyme corresponds to a monomer with a molecular mass of 20 kDa and a pI of 4.9. A specific activity was found only for polyglucuronates leading to the production of 4,5-unsaturated oligoglucuronates. The enzyme activity was optimal at pH 6.5 and 50 degrees C. Zn(2+), Cu(2+), and Hg(2+) (1 mM) inhibited the enzyme activity. No homology of the enzyme N-terminal amino acid sequence was found with any of the previously published protein sequences. This enzyme purified from S. meliloti strain M5N1CS corresponding to a new lyase was classified as an endopolyglucuronate lyase.  相似文献   

14.
An integrated control strategy of pH, shear stress, and dissolved oxygen tension (DOT) for fermentation scale-up of the marine-derived fungus Aspergillus glaucus HB 1–19 for the production of the anti-cancer compound aspergiolide A was studied. Keeping initial pH of 6.5 and shifting pH from 6.0 to 7.0 intermittently during the production phase greatly facilitated biosynthesis of aspergiolide A in shake flask cultures. Thus, a pH-shift strategy was proposed that shifting pH to 7.0 once it went lower than 6.0 by pulsed feeding NaOH solution during the production phase in bioreactor fermentation of A. glaucus HB 1–19. As a result, aspergiolide A production in a 30-L bioreactor was increased to 37.6?mg/L, which was 48.6% higher than that in 5-L bioreactor without pH shift. Fermentation scale-up was then performed in a 500-L bioreactor on the basis of an integrated criterion of near-same impeller tip velocity of early phase, DOT levels, and pH shift. The production of aspergiolide A was successfully obtained as 32.0?mg/L, which was well maintained during the process scale-up. This work offers useful information for process development of large-scale production of marine microbial metabolites.  相似文献   

15.
A stirred tank bioreactor (STB) integrated with an expanded bed adsorption (EBA) system containing anion-exchange resin (Diaion WA30) was developed for in situ removal of acetate to increase the production of α-interferon-2b (α-PrIFN-2b) by Escherichia coli (E. coli). Although the total acetate (9.79 g/L) secreted by E. coli in the integrated STB/EBA system was higher than that in a bioreactor with dispersed resin or a conventional batch bioreactor, cell growth (14.97 g/L) and α-PrIFN-2b production (867.4 μg/L) were significantly improved owing to the high efficiency of acetate removal from the culture. The production of α-PrIFN-2b in the integrated STB/EBA system was improved by 3-fold and 1.4-fold over that obtained in a conventional batch bioreactor and a bioreactor containing dispersed resins, respectively.  相似文献   

16.
The purpose of this study was to develop a cell culture process in a bioreactor for the production of a viral insecticide for the spruce budworm, Choristoneura fumiferana . Several cell lines were tested for their growth in serum-free medium suspension cultures. One cell line, CF-124T-2C1 (CF-2C1), was successfully adapted to grow in suspension cultures in SFM. Serum-free Ex-Cell 405 medium produced a much higher cell density (6.3 x 10 6 cells ml -1 ) than the Grace's medium supplemented with 10% fetal bovine serum (2.5 x 10 6 cells ml -1 ). Also, a higher yield of virus was obtained in the former medium. Ex-Cell 405, was used to study the growth of CF-2C1 cells and the production of C. fumiferana nucleopolyhedrovirus (CfMNPV) in a 3 l bioreactor. Under these conditions, a specific growth rate ( μ) of 0.027 h -1 was obtained during the exponential growth phase, and the specific carbon dioxide evolution rate, as determined by on-line measurement, was 0.9 x 10 -16 mol cell -1 s -1 and 1.78 x 10 -16 mol cell -1 s -1 during growth and infection phases, respectively. Virus production in bioreactor cultures infected at 1.3 x 10 6 cells ml -1 was consistently lower than that obtained in Erlenmeyer shake flasks. Only 26% of the cells were infected in the bioreactor compared to 44% in the shake flasks. However, a higher yield of occluded virus was obtained in the bioreactor cultures than in shake flasks. The production of occlusion bodies (OB) achieved in bioreactor cultures was 2 x 10 6 OB ml -1 .  相似文献   

17.
The production of hGM-CSF was investigated in both a flask and a 5-l bioreactor, using transgenic Nicotiana tabacum suspension cells. While the maximum cell density and secreted hGM-CSF in the flask were 15.4 g l−1 and 6.5 μg l−1, respectively, those in the bioreactor were 15.6 g l−1 and 7.6 μg l−1. No detectable growth inhibition, shorter production of hGM-CSF and reduced cell viability in the batch bioreactor were observed under the specific conditions used compared with the flask culture. To improve the productivity, a perfusion culture was carried out in the bioreactor, with three different perfusion rates (0.5, 1.0 and 2.0 day−1). In all cases, the hGM-CSF in the medium was significantly increased during the overall culture period (16 days), with maximum values 3.0-, 9.4- and 6.0-fold higher than those obtained in the batch cultures, respectively, even though the intracellular hGM-CSF content was not significantly varied by the perfusion rate. In terms of the total amount of hGM-CSF secreted, 205.5, 1073.2 and 1246.3 μg accumulated in the perfusate within 16 days at the perfusion rates of 0.5, 1.0 and 2.0 day−1, respectively. It was concluded that the beneficial effect of perfusion on the production of hGM-CSF originated from the reduced proteolytic degradation due to the lower protease activity caused by the perfusion. Additionally, the cell growth and physiology in the perfusion culture were somewhat negatively affected by the increased perfusion rate, although the dry cell density steadily increased, and as a result, 19.4, 22.4 and 22.9 g l−1 of maximum cells were obtained with perfusion rates of 0.5, 1.0 and 2.0 day−1, respectively. This work highlighted the importance of proteolytic degradation in plant cell cultures for the production of secretory proteins and the feasibility of perfusion strategies for the continuous production of foreign proteins by the prevention of protein loss due to proteolytic enzymes.  相似文献   

18.
The chemical composition and structures of several ulvan extracts isolated from various Ulva species were studied. They were all composed mainly of rhamnose, glucuronic acid, xylose, glucose and sulphate with smaller amounts of iduronic acid and traces of galactose. Proteins were also present, most likely as contaminants. Precise quantification of the uronic acid content by chemical-enzymatic hydrolysis coupled to HPAEC-PAD analysis and by colorimetry was not achieved, most likely due to the incomplete hydrolysis of glucuronan segments, inadequate HPAEC-pulsed-amperometric response factor for iduronic acid and to a possible differential colorimetric response of the two uronic acids. 13C NMR spectroscopic investigation of different ulvans demonstrated that they were all based on ulvanobiuronic acid 3-sulphate A and B repeating units [β-D-Glc pA-(1->4)-α-L-Rhap3S and α-L-IdopA-(1->4)-α-L-Rha p3S, respectively] as well as contiguous β 1->4 linked D-glucuronic acids possibly occurring either in ulvan or as a separate glucuronan. Marked variations in the content of the repeating structures were seen among the different samples. However, due to the limited number of samples studied, no conclusion was reached concerning the effects of species and ecophysiological conditions on the chemistry of ulvan. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Continuous production of a recombinant murine granulocyte-macrophage colony-stimulating factor (GM-CSF) by Saccharomyces cerevisiae strain XV2181 (a/a, Trp 1) containing plasmid palphaADH2 and immobilized on porous glass beads in a fluidized bed bioreactor was studied. Kinetic models for plasmid stability, cell growth, and protein production in the three-phase fluidized bed bioreactor were developed and used to study the effects of solid loading or cell immobilization on plasmid stability and recombinant protein production. With increasing cell immobilization or solid loading in the bioreactor, plasmid stability and protein production improved significantly. The improvements could be attributed to the decreased theta value, which is the plasmid loss probability during cell division and is an indication of segregational instability of the recombinant cell, and the increased alpha value, which is the ratio of the specific growth rate of a plasmid-carrying cell to that of a plasmid-free cell and is indicative of competitive stability of the recombinant cell culture. theta decreased from 0.552 to 0.042 and alpha increased from 0.351 to 0.991 when solid loading in the bioreactor was increased from 5% (v/v) to 33%. The model simulation also showed that the specific growth rate of cells in the bioreactor was lower at higher solid loading. This indicated that there was significant mass transfer limitation, particularly for oxygen transfer, when the total cell density in the bioreactor was high at high solid loading. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 470-477, 1997.  相似文献   

20.
Abstract

PGHX is a polymer of β (1-3)-galactose which posses the gel-forming property. As previously reported in the flask culture experiment, the crude PGHX (24.9?g/L, 48.2% in yield) with the maximum gel strength of 957?g/cm2 can be generated. However, PGHX produced in the stirred bioreactor had no gel-forming property when using the same medium. Hence, the effects of different glycerol concentrations on both the yield and the gel-forming property of PGHX were investigated and the reason for gel-forming property losing was explored. We proposed a new strategy for the production of PGHX with enhanced gel formation in the stirred bioreactor by mediating both the concentration of carbon source and the duration of fermentation. As a result, we managed to obtain the crude PGHX (22?g/L, 42.4% in yield) with the maximum gel strength of 438?g/cm2 at 56?h in the bioreactor. This strategy would help the enhancement of PGHX yield in the industrial production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号