首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a successful nitrogen removal, Anammox process needs to be established in line with a stable partial nitritation pretreatment unit since wastewater influent is mostly unsuitable for direct treatment by Anammox. Partial nitritation is, however, a critical bottleneck for the nitrogen removal since it is often difficult to maintain the right proportions of NO2-N and NH4-N during long periods of time for Anammox process. This study investigated the potential of Anammox-zeolite biofilter to buffer inequalities in nitrite and ammonium nitrogen in the influent feed. Anammox-zeolite biofilter combines the ion-exchange property of zeolite with the biological removal by Anammox process. Continuous-flow biofilter was operated for 570 days to test the response of Anammox-zeolite system for irregular ammonium and nitrite nitrogen entries. The reactor demonstrated stable and high nitrogen removal efficiencies (approximately 95 %) even when the influent NO2-N to NH4-N ratios were far from the stoichiometric ratio for Anammox reaction (i.e. NO2-N to NH4-N ranging from 0 to infinity). This is achieved by the sorption of surplus NH4-N by zeolite particles in case ammonium rich influent came in excess with respect to Anammox stoichiometry. Similarly, when ammonium-poor influent is fed to the reactor, ammonium desorption took place due to shifts in ion-exchange equilibrium and deficient amount were supplied by previously sorbed NH4-N. Here, zeolite acted as a preserving reservoir of ammonium where both sorption and desorption took place when needed and this caused the Anammox-zeolite system to act as a buffer system to generate a stable effluent.  相似文献   

2.
Partial nitrification has proven to be an economic way for treatment of industrial N-rich effluent, reducing oxygen and external COD requirements during nitrification/denitrification process. One of the key issues of this system is the intermediate nitrite accumulation stability. This work presents a control strategy and a modeling tool for maintaining nitrite build-up. Partial nitrification process has been carried out in a sequencing batch reactor at 30 degrees C, maintaining strong changing ammonia concentration in the reactor (sequencing feed). Stable nitrite accumulation has been obtained with the help of an on-line oxygen uptake rate (OUR)-based control system, with removal rate of 2 kg NH4 (+)-N x m(-3)/day and 90%-95% of conversion of ammonium into nitrite. A mathematical model, identified through the occurring biological reactions, is proposed to optimize the process (preventing nitrate production). Most of the kinetic parameters have been estimated from specific respirometric tests on biomass and validated on pilot-scale experiments of one-cycle duration. Comparison of dynamic data at different pH confirms that NH3 and NO2- should be considered as the true substrate of nitritation and nitratation, respectively. The proposed model represents major features: the inhibition of ammonia-oxidizing bacteria by its substrate (NH3) and product (HNO2), the inhibition of nitrite-oxidizing bacteria by free ammonia (NH3), the INFluence of pH. It appears that the model correctly describes the short-term dynamics of nitrogenous compounds in SBR, when both ammonia oxidizers and nitrite oxidizers are present and active in the reactor. The model proposed represents a useful tool for process design and optimization.  相似文献   

3.
Nitrate and ammonium removal from purified swine wastewater using biogas and air was investigated in continuous reactor operation. A novel type of reactor, a semi-partitioned reactor (SPR), which enables a biological reaction using methane and oxygen in the water phase and discharges these unused gases separately, was operated with a varying gas supply rate. Successful removal of NO(3)(-) and NH(4)(+) was observed when biogas and air of 1L/min was supplied to an SPR of 9L water phase with a NO(2,3)(-)-N and NH(4)(+)-N removal rate of 0.10 g/L/day and 0.060 g/L/day, respectively. The original biogas contained an average of 77.2% methane, and the discharged biogas from the SPR contained an average of 76.9% of unused methane that was useable for energy like heat or electricity production. Methane was contained in the discharged air from the SPR at an average of 2.1%. When gas supply rates were raised to 2L/min and the nitrogen load was increased, NO(3)(-) concentration was decreased, but NO(2)(-) accumulated in the reactor and the NO(2,3)(-)-N and NH(4)(+)-N removal activity declined. To recover the activity, lowering of the nitrogen load and the gas supply rate was needed. This study shows that the SPR enables nitrogen removal from purified swine wastewater using biogas under limited gas supply condition.  相似文献   

4.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant would significantly reduce the nitrogen load of the activated sludge system. Some years ago, a novel biological process was discovered in which ammonium is converted to nitrogen gas under anoxic conditions with nitrite as the electron acceptor (anaerobic ammonium oxidation, anammox). Compared to conventional nitrification and denitrification, the aeration and carbon-source demand is reduced by over 50 and 100%, respectively. The combination of partial nitritation to produce nitrite in a first step and subsequent anaerobic ammonium oxidation in a second reactor was successfully tested on a pilot scale (3.6 m(3)) for over half a year. This report focuses on the feasibility of nitrogen removal from digester effluents from two different wastewater treatment plants (WWTPs) with the combined partial nitritation/anammox process. Nitritation was performed in a continuously stirred tank reactor (V=2.0 m(3)) without sludge retention. Some 58% of the ammonium in the supernatant was converted to nitrite. At 30 degrees C the maximum dilution rate D(x) was 0.85 d(-1), resulting in nitrite production of 0.35 kg NO(2)-N m(-3)(reactor) d(-1). The nitrate production was marginal. The anaerobic ammonium oxidation was carried out in a sequencing batch reactor (SBR, V=1.6 m(3)) with a nitrogen elimination rate of 2.4 kg N m(-3)(reactor) d(-1) during the nitrite-containing periods of the SBR cycle. Over 90% of the inlet nitrogen load to the anammox reactor was removed and the sludge production was negligible. The nitritation efficiency of the first reactor limited the overall maximum rate of nitrogen elimination.  相似文献   

5.
In this study, the effects of sludge retention time (SRT) on NH(4)-N oxidation and NO(x)-N accumulation in the nitritation reactors were studied. The gradually decrease of SRT also caused long reaction time to achieve 99% NH(4)-N removal. Although the target NH(4)-N removal was achieved in a short reaction time at 40 days of SRT, decreasing of SRT from 40 to 30, 25, 20 days, increase the reaction time from 168 to 240 and 265 h, respectively. The inlet NH(4)-N was almost oxidized and the concentration of NO(2)-N accumulated to a high level of 177 mg/l, while NO(2)-N/(NO(3)-N+NO(2)-N) ratio was about 0.9 at SRT of 40 days. However, the concentration of NO(3)-N increased slightly and NO(2)-N/(NO(x)-N) ratio dropped to 0.8 when the SRT was lower than 40 days. During the operation in a cycle, free ammonia concentration in the SBR was decreased from 2.8 to 0.7 mg/l which is below the lowest concentration causing inhibition of nitrite oxidizing bacteria (NOB). It was assumed that combined dissolved oxygen limitation and NH(3)-N inhibition on NOB caused NO(2)-N accumulation under the experimental conditions.  相似文献   

6.
The longer start-up period of the Anammox process is due to the very low cellular yield and growth rates of Anammox bacteria. Nitrite inhibition is considered to be the key factor in the instability of the Anammox process during the operation. However, little attention was paid to the inhibitory effect of pH and free ammonia. This paper presents start-up and inhibition analysis of an Anammox biofilm reactor seeded with anaerobic granular sludge. Results showed that the start-up period could be divided into the sludge lysis phase, lag phase, propagation phase, stationary phase and inhibition phase. Optimization control could be implemented correspondingly to accelerate the start-up of Anammox bioreactors. Effluent pH increased to 8.7–9.1 when the nitrogen removal rate was higher than 1,200 mg l−1 day−1. The free ammonia concentration was accompanied with a higher level of 64–73 mg l−1. Inhibitory effects of high pH and free ammonia on Anammox bacteria contributed to the destabilization of the Anammox bioreactor during the first 125 days with influent KHCO3 of 0.5 g l−1. Increasing the suffering capacity in the inlet by dosing 1.25 g KHCO3 l−1 effectively reduced the pH variation, and the nitrogen removal performance of the reactor was further developed.  相似文献   

7.
CANON and Anammox in a gas-lift reactor   总被引:57,自引:0,他引:57  
Anoxic ammonium oxidation (Anammox) and Completely Autotrophic Nitrogen removal Over Nitrite (CANON) are new and promising microbial processes to remove ammonia from wastewaters characterized by a low content of organic materials. These two processes were investigated on their feasibility and performance in a gas-lift reactor. The Anammox as well as the CANON process could be maintained easily in a gas-lift reactor, and very high N-conversion rates were achieved. An N-removal rate of 8.9 kg N (m(3) reactor)(-1) day(-1) was achieved for the Anammox process in a gas-lift reactor. N-removal rates of up to 1.5 kg N (m(3) reactor)(-1) day(-1) were achieved when the CANON process was operated. This removal rate was 20 times higher compared to the removal rates achieved in the laboratory previously. Fluorescence in situ hybridization showed that the biomass consisted of bacteria reacting to NEU, a 16S rRNA targeted probe specific for halotolerant and halophilic Nitrosomonads, and of bacteria reacting to Amx820, specific for planctomycetes capable of Anammox.  相似文献   

8.
【背景】低碳氮比生活污水很难达标处理,多级A/O工艺、生物强化技术及生物膜技术的有机结合可有效解决这一问题。【目的】开发出一种泥膜共生多级A/O工艺并进行中试研究,驯化出高效脱氮除磷菌剂并对系统进行生物强化。【方法】通过测定中试设备出水及污水处理厂出水化学需氧量(Chemical oxygen demand,COD)、氨氮(NH_4~+-N)、硝氮(NO_3~--N)、总氮(Total nitrogen,TN)、总磷(Total phosphorus,TP)对比分析两种工艺的污染物去除效能,利用高通量测序技术对比生物强化技术对系统微生物群落结构的影响。【结果】中试设备对COD、NH_4~+-N、NO_3~--N、TN、TP的去除效果均优于污水处理厂的处理工艺;驯化的低温好氧反硝化菌TN去除率最大值可达84.21%,驯化的低温反硝化聚磷菌群对磷的去除率最高可达85.75%;利用驯化菌群对中试设备进行生物强化后较好地改善了系统NH_4~+-N、NO_3~--N、TN、TP的去除效果;经生物强化后,具有好氧反硝化和反硝化聚磷功能的Pseudomonas菌群明显增多。【结论】泥膜共生多级A/O工艺对于低碳氮比生活污水的处理具有很好的效果,利用生物强化技术可有效提高低温条件下系统污染物去除效能。  相似文献   

9.
厌氧氨氧化菌的研究进展   总被引:1,自引:0,他引:1  
秦玉洁  周少奇 《生态学杂志》2007,26(11):1867-1872
厌氧氨氧化技术是一种新型生物脱氮技术,在废水处理中具有广泛的应用前途,对全球海洋的氮循环起着重要作用。由于反应中不需另加有机物、不消耗氧气、不会产生二次污染等优点,厌氧氨氧化技术受到格外关注。通常认为,厌氧氨氧化的机理在于厌氧氨氧化菌使氨和亚硝酸反应生成氮气。通过16SrRNA分子生物学方法已鉴定出该菌群属于分枝很深的浮霉菌,由于至今未能成功分离到纯的菌株,未正式命名,对其微生态环境以及生理生化特征也未能取得一致的意见。本文综述了国内外对厌氧氨氧化微生物的作用、分布、种类、生理生化特征等研究进展,认为厌氧氨氧化菌的分离纯化、生物特性、小生境等是今后的主要研究方向。  相似文献   

10.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

11.
An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration.  相似文献   

12.
Yu Y  Feng Y  Qiu L  Han W  Guan L 《Bioresource technology》2008,99(10):4120-4123
Grain-slag was applied as the media of biological aerated filters (BAF). The performance of two lab-scale BAF was monitored for 6 months to compare the effect of grain-slag with haydite as media. Under ammonia nitrogen load rates varying from 0.49 to 1.21 kg NH(3)-N(m(3)d)(-1), the overall NH(3)-N reductions of the BAF supported by grain-slag and haydite averaged 84.30% and 80.87%, respectively. Higher ammonia nitrogen removal in the BAF with grain-slag was attributable to its buffering pH value capacity by stripping calcium carbonate (CaCO(3)). In terms of removing organic matter, turbidity and colourity, the efficiency of the BAF with grain-slag was lower than that with haydite, but more than 78%, 79% and 80% of fed organic matter, turbidity and colourity was still removed, respectively. So it is feasible for grain-slag to be applied as the media of BAF. The results obtained from the research of ammonia nitrogen removal rate versus pH values indicate that ammonia nitrogen removal rates were not distinctly dependent of pH values in the BAF supported by grain-slag. More than 85% of ammonia nitrogen was removed at pH values from 5.2 to 7.8 ranges. Grain-slag can strip CaCO(3) into the wastewater to buffer pH value and maintain optimal nitrification rates.  相似文献   

13.
中试厌氧氨氧化反应器的启动与调控   总被引:16,自引:1,他引:16  
研究了中试厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)反应器的启动性能。结果表明,以硝化反硝化污泥、短程硝化污泥、厌氧絮体污泥和厌氧颗粒污泥混合接种,经过255d的运行,可在常温下(5oC~27oC)成功启动中试Anammox反应器,反应器的基质氮去除速率可达1.30kg/(m3·d)。厌氧氨氧化是致碱反应,厌氧氨氧化成为反应器内的主导反应后,进水pH宜控制在厌氧氨氧化适宜范围的偏低水平(6.8左右)。亚硝酸盐既是Anammox菌的基质,也是抑制剂,控制进水亚硝酸盐浓度(13~36mg/L)有助于厌氧氨氧化反应。菌种是生物反应器的功能之源,向中试装置投加少量厌氧氨氧化污泥(投加比2%),可大大加速中试Anammox反应器的启动进程。  相似文献   

14.
In this study, effluent sludge from a high-rate Anammox reactor was used to re-start new Anammox reactors for the reactivation of Anammox granular sludge. Different start-up strategies were evaluated in six upflow anaerobic sludge blanket (UASB) reactors (R1–R6) for their effect on nitrogen removal performance. Maximal nitrogen removal rates (NRRs) greater than 20 kg N/m3/day were obtained in reactors R3–R5, which were seeded with mixed Anammox sludge previously stored for approximately 6 months and 1 month. A modified Boltzmann model describing the evolution of the NRR fit the experimental data well. An amount of sludge added to the UASB reactor or decreasing the loading rate proved effective in relieving the substrate inhibition and increasing the NRR. The modified Stover–Kincannon model fit the nitrogen removal data in the Anammox reactors well, and the simulation results showed that the Anammox process has great nitrogen removal potential. The observed inhibition in the Anammox reactors may have been caused by high levels of free ammonia. The sludge used to seed the reactors did not settle well; sludge flotation was observed even after the reactors were operated for a long time at a floating upward velocity (Fs) of greater than 100 m/h. The settling sludge, however, exhibited good settling properties. Scanning electron microscopy showed that the Anammox granules consisted mainly of spherical and elliptical bacteria with abundant filaments on their surface. Hollows in the granules were also present, which may have contributed to sludge floatation.  相似文献   

15.
郑平 《生物工程学报》2014,30(12):1801-1803
厌氧氨氧化是环境微生物领域的重要发现,在废水生物脱氮和地球氮素循环中具有重大作用。为了反映近年来国内外厌氧氨氧化研究的一些重要进展,组织出版了"厌氧氨氧化专刊"。本期专刊包括综述和研究论文两部分,内容涉及厌氧氨氧化的菌群富集、菌群分析、菌种保藏、碳源影响、工艺应用、优化对策等。  相似文献   

16.
The paper presents the study correlating the profile of on-line monitoring parameters and nutrient removal in an intermittent cyclic process bioreactor (ICPBR) system, thereby utilizing the parameters as operational tool. A laboratory scale ICPBR was employed to treat low C/N ratio domestic wastewater from a township. The study was conducted for correlating biological nutrient removal and on-line monitored parameters pH, dissolved oxygen (DO) and oxidation-reduction potential (ORP). The results revealed that pH, DO and ORP related with the dynamic behavior of nutrient concentration (NH4-N, NO3-N, and PO4-P) during treatment in an ICPBR system. The variation in pH and ORP of the reactor liquor correlate to conversion of ammonia (NH4-N) and nitrate (NO3-N) concentrations, respectively. As the bioconversion of ammonia nitrogen and phosphorus are related to the varying profile of the on-line monitored parameters, the profiles could possibly be used as onsite process control parameters.  相似文献   

17.
Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 ± 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2 /NH4 + ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m3 day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.  相似文献   

18.
Changes in the fractions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in two laboratory-scale reactors were investigated using 16S rRNA probe hybridizations. The reactors were operated in intermittent aeration mode and different aeration cycles to treat anaerobically digested swine wastewater with ammonia concentrations up to 175 mg NH(3)-N/L. High ammonia removals (>98.8%) were achieved even with increased nitrogen loads and lower aeration: non-aeration time ratios of 1h:3h. Nitrosomonas/Nitrosococcus mobilis were the dominant ammonia-oxidizing bacteria in the reactors. Nitrospira-like organisms were the dominant nitrite-oxidizing bacteria during most of the investigation, but were occasionally outcompeted by Nitrobacter. High levels of nitrifiers were measured in the biomass of both reactors, and ammonia-oxidizing bacteria and nitrite-oxidizing bacterial levels adjusted to changing aeration: non-aeration time ratios. Theoretical ammonia-oxidizer fractions, determined by a mathematical model, were comparable to the measured values, although the measured biomass fractions were different at each stage while the theoretical values remained approximately constant. Stable ammonia removals and no nitrite accumulation were observed even when rRNA levels of ammonia oxidizers and nitrite-oxidizers reached a minimum of 7.2% and 8.6% of total rRNA, respectively. Stable nitrogen removal performance at an aeration: non-aeration ratio of 1h:3h suggests the possibility of significant savings in operational costs.  相似文献   

19.
In this study, the feasibility of biological urea nitrogen removal in anaerobic Anammox co-culture was investigated. After 100 days of operation, complete urea nitrogen removal of 0.35 g (NH(2))(2)CO-N L(-1) d(-1) was achieved. The pure Anammox bacteria were obtained by percoll density-gradient centrifugation and found to be of incapable to hydrolyze urea. The ureolytic bacteria were isolated from the Anammox co-culture by the spread plate and streak. Comparative analysis of partial 16S rDNA sequence presented it belongs to Bacillus sp., and so named as Bacillus sp. LST-1. Fluorescence in situ hybridization was applied to identify the ratio of Bacillus sp. and Anammox in the reactor and the value was approximately 1:4. Urea nitrogen removal was realized in this autotrophic, anoxic reactor via the combined process of urea hydrolysis by Bacillus sp. LST-1 and ammonium oxidizing by Anammox. The investigation of this combined process might have an actual significance in engineering application for its low operational cost.  相似文献   

20.
The oxidation of ammonia to dinitrogen through partial nitritation and anaerobic ammonium oxidation (ANAMMOX) in a single-stage bioreactor is based on suppressing the nitratation process. The single-stage process operated on a laboratory-scale fixed film bioreactor achieved ammonia removal of 0.7 kg NH4-N/(m3 day) at 4 h hydraulic retention time (HRT) by controlling the nitratation process through a ‘three-way control mechanism’ comprising control of electron donor (nitrite), electron acceptor (oxygen) and carbon source (bicarbonate). The control of alkalinity and dissolved oxygen (DO) concentrations in feed to maintain an alkalinity to ammonia ratio of less than 8 and DO loading of less than 0.06 mg O/(mg N day), respectively, was necessary for inhibiting nitratation and enhancing partial nitritation and ANAMMOX. Therefore, feed alkalinity along with DO concentrations are critical controlling parameters in a single-stage biological process for nitrogen removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号