首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A myosin was isolated from the clonal rat glial cell strain C-6 and compared with rat skeletal muscle myosin. After cell extracts were subjected to gel filtration chromatography in the presence of KI and magnesium pyrophosphate the C-6 myosin was rapidly purified by a procedure similar to that used for skeletal muscle myosin. The C-6 myosin resembles muscle myosin both physically and enzymatically. It contains heavy chains of 200,000 daltons and two classes of light chains of 17,000 and 19,000 daltons in approximately equal molar ratios. This myosin forms bipolar thick filaments in 0.1 M KCl and binds reversibly to skeletal muscle F-actin, the binding being inhibited by MgATP. Skeletal muscle F-actin stimulates the C-6 myosin adenosine triphosphatase 2- to 3-fold in the presence of KCl and Mg2+. The action activation of muscle myosin ATPase at low ionic strength is 10-fold greater than that of C-6 myosin. Ca2+ and EDTA stimulated the ATPase activities of both enzymes. When assayed in the presence of 0.6 M KCl and 1 mM EDTA the skeletal muscle myocin ATPase demonstrates substrate saturation while the C-6 myosin enzyme activity is stimulated by ATP concentrations above 2.5 mM.  相似文献   

2.
R A Cross  A Sobieszek 《FEBS letters》1985,188(2):367-374
Conventional smooth muscle myosin preparations contain a tightly bound myosin light chain kinase activity, which is incompletely removed by gel filtration at high ionic strength. We show here that by contrast, this kinase activity is released, together with calmodulin, under conditions in which myosin is in the folded configuration. The conformation-related release of kinase occurred for dephosphorylated myosin in both the presence and absence of ATP and Ca2+. Binding of kinase to extended phosphorylated myosin was relatively weaker than to dephosphorylated myosin, but was nonetheless detected. The kinetic consequences of this binding behaviour were determined by measuring initial myosin phosphorylation rates as a function of KCl concentration. Rate optima occurred at 60 mM KCl and 300 mM KCl, conditions favouring respectively stable filaments and stable extended monomers. Phosphorylation of the folded monomer was uniformly slow at low KCl concentrations. The folded myosin monomer is thus a relatively poor substrate for the kinase, and is therefore unlikely to represent an analog of the relaxed crossbridge configuration in myosin filaments.  相似文献   

3.
Effects of purealin isolated from a sea sponge, Psammaplysilla purea, on the enzymatic and physiochemical properties of chicken gizzard myosin were studied. At 0.15 M KCl, 40 microM purealin increased the Ca2+- and Mg2+-ATPase activity of dephosphorylated gizzard myosin to 2.5- and 3-fold, respectively, but decreased the K+-EDTA-ATPase activity of the myosin to 0.25-fold. In contrast, purealin had little effect on the ATPase activities of phosphorylated gizzard myosin. The ATP-induced decrease in light scattering of dephosphorylated gizzard myosin at 0.15 M KCl was lessened by 40 microM purealin. Electron microscopic observations indicated that thick filaments of dephosphorylated myosin were disassembled immediately by addition of 1 mM ATP at 0.15 M KCl, although they were preserved by purealin for a long time even after addition of ATP. Upon ultracentrifugation, dephosphorylated myosin sedimented as two components, the 10 S species and myosin filaments, in the solution containing 0.18 M KCl and 1 mM Mg X ATP in the presence of 60 microM purealin. These results suggest that purealin modulates the ATPase activities of dephosphorylated gizzard myosin by enhancing the stability of myosin filaments against the disassembling action of ATP.  相似文献   

4.
The actin-activated Mg-ATPase activities of unphosphorylated and heavy chain phosphorylated Dictyostelium myosin II and of a Dictyostelium myosin II heavy meromyosin (HMM) fragment were examined at different Mg2+ and KCl concentrations. The Mg-ATPase activity of HMM displayed a maximum rate, Vmax, of about 4.0/s and a Kapp (actin concentration required to achieve 1/2 Vmax) that increased from 8 to 300 microM as the KCl concentration increased from 0 to 120 mM. When assayed with greater than 5 mM Mg2+ and 0 mM KCl the unphosphorylated Dictyostelium myosin II yielded a Kapp of 0.25 microM and a Vmax of 2.8/s. At lower Mg2+ concentrations or with 50 mM KCl the data were not fit well by a single hyperbolic curve and Kapp increased to 25-100 microM. The increase in Kapp did not correlate with the loss of sedimentable filaments. At KCl concentrations above 100 mM Vmax increased to greater than 4/s. Heavy chain phosphorylated myosin (3.5 mol of phosphate/mol myosin) displayed a Vmax of about 5/s and a Kapp of 50 microM under all conditions tested. Thus, heavy chain phosphorylation inhibited the actin-activated Mg-ATPase activity of Dictyostelium myosin II in 5-10 mM Mg2+ and low ionic strength through an increase in Kapp.  相似文献   

5.
1. Purealin, a novel bioactive principle of a sea sponge Psammaplysilla purea, activated the superprecipitation of myosin B (natural actomyosin) from rabbit skeletal muscle. The maximum change in the turbidity increased with increasing purealin concentrations and was three times the control value in the presence of 50 microM purealin. 2. The ATPase activity of myosin B was also elevated to 160% of the control value by 10 microM purealin. On the other hand, purealin inhibited the myosin ATPase in the presence of 10 mM CaCl2 and 0.5 M KCl (Ca2+-ATPase), and the concentration for the half inhibition was 4 microM. 3. On the other hand, purealin activated the myosin ATPase in the presence of 5 mM EDTA and 0.5 M KCl (EDTA-ATPase). The maximum activation by 10 microM purealin was 160% of the control value. 4. Furthermore, similar results concerning the modification of ATPase activities by purealin were obtained in myosin subfragment-1 instead of myosin. 5. These results suggest that purealin activates the superprecipitation of myosin B by affecting the myosin heads directly. It is also an interesting observation that there is a correlation between the activities of the myosin EDTA-ATPase and actomyosin ATPase of myosin B.  相似文献   

6.
AMP deaminase was completely solubilized from rat skeletal muscle with 50 mM Tris-HCl buffer (pH 7.0) containing KCl at a concentration of 0.3 M or more. The purified enzyme was found to be bound to rat muscle myosin or actomyosin, but not to F-actin at KCl concentrations of less than 0.3 M. Kinetic analysis indicated that 1 mol of AMP deaminase was bound to 3 mol of myosin and that the dissociation constant (Kd) of this binding was 0.06 micrometer. It was also shown that AMP deaminase from muscle interacted mainly with the light meromyosin portion of the myosin molecule. This finding differs from that of Ashby and coworkers on rabbit muscle AMP deaminase, probably due to a difference in the properties of rat and rabbit muscle AMP deaminase. AMP deaminase isozymes from rat liver, kidney and cardiac muscle did not interact with rat muscle myosin. The physiological significance of this binding of AMP deaminase to myosin is discussed.  相似文献   

7.
Interaction of adenylosuccinate synthetase with F-actin   总被引:1,自引:0,他引:1  
Both crude and purified preparations of adenylosuccinate synthetase from muscle were found to combine with, and dissociate from, muscle debris precipitated from a homogenate of the muscle with water. The binding and dissociation depended on ionic strength. Further study showed that the muscle enzyme was adsorbed to F-actin, but not to G-actin or myosin. The muscle-type enzyme from the liver also associated with F-actin, but the liver-type enzyme from the liver did not. In the absence of KCl the molar ratio of adenylosuccinate synthetase from skeletal muscle to actin monomer in F-actin in the complex formed was 1 to 4. From a Scatchard plot the dissociation constant was calculated to be 0.72 micrometer. The binding was maximal at pH 5.5-7 in 30 mM potassium phosphate buffer. The complex was completely dissociated in the presence of 0.21 M KCl. The physiological significance of this binding is discussed on the basis of these findings.  相似文献   

8.
Conditions were developed for the long-term stabilization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum, purified Ca2+-ATPase, and purified-delipidated Ca2+-ATPase preparations. The standard storage medium contains 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Preparations stored under these conditions at 2 degrees C in a nitrogen atmosphere retain significant Ca2+-stimulated ATPase activity for periods of 5-6 months or longer when assayed in the presence of asolectin. The same conditions are also conducive for the formation of three-dimensional microcrystals of Ca2+-ATPase. Of the 49 detergents tested for solubilization, optimal crystallization of Ca2+-ATPase was obtained in sarcoplasmic reticulum solubilized with octaethylene glycol dodecyl ether at a detergent/protein weight ratio of 2, and with Brij 36T, Brij 56, and Brij 96 at a detergent/protein ratio of 4. Similar Ca2+-induced crystals of Ca2+-ATPase were obtained with purified or purified delipidated ATPase preparations at lower detergent/protein ratios. The stabilization of the ATPase activity in the presence of detergents is the combined effect of high Ca2+ (20 mM) and a relatively high glycerol concentration (20%). Ethylene glycol, glucose, sucrose, or myoinositol can substitute for glycerol with preservation of ATPase activity for several weeks in the presence of 20 mM Ca2+.Ca2+-induced association between ATPase molecules may be an essential requirement for preservation of enzymatic activity, both in intact sarcoplasmic reticulum and in solubilized preparations.  相似文献   

9.
A rapid purification scheme utilizing three chromatographic steps resulted in 6 fold purification of Aspergillus ficuum phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase, EC 3.1.3.8). At pH 5.0 and 60 degrees C the enzyme performed acceptably for 2.0 hr with only 30% diminished catalytic rate at the end. Substrate concentration exceeding 2mM was inhibitory. The inorganic orthophosphate, the product and a weak inhibitor, exhibited a Ki of 1.9 x 10(-3)M. The extracellular phytase has the potential for industrial use since it can be over produced, easily purified, remain catalytically active for a longer period and is not subjected to severe product inhibition.  相似文献   

10.
The Malachite Green method for determination of inorganic phosphate (Pi) (Itaya K. & Ui, M. (1966) Clin. Chim. Acta 14, 361-366) was modified to measure Pi in the range of 0.2-15 nmol per ml of ATPase reaction mixture. An ATPase reaction mixture is quenched with an equal volume of 0.6 M PCA; the supernatant after centrifugation is mixed with an equal volume of the Malachite Green/molybdate reagent containing 2 g of sodium molybdate, 0.3 g of Malachite Green and 0.5 g of Triton X-100 or Sterox SE in 1 liter of 0.7 M HCl, and the absorbance at 650 nm is then measured after a 35-40 min incubation at 25 degrees C. Owing to the high sensitivity and simplicity of the modified method, the slow time course of myosin ATP hydrolysis in the presence of Mg2+ and the size of initial phosphate burst can be determined accurately using relatively low concentrations of native myosin and its subfragment-1. The phosphate burst size varied with changes in pH, ionic strength, and temperature. A typical value was 0.8-0.9 mol per site in 0.1 M KCl, 10 mM MgCl2, pH 8.0 at 25 degrees C for fresh enzyme preparations.  相似文献   

11.
Effects of K-252a, (8R*, 9S*, 11S*)-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo[a,g]cycloocta [cde]trinden-1-one, purified from the culture broth of Nocardiopsis sp., on the activity of myosin light chain kinase were investigated. 1) K-252a (1 x 10(-5) M) affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca2+-dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca2+-independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10(-6) M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10(-4) M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lower in the presence of 100 microM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [gama-32P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP (Ki = 20 nM). These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase. The direct action of the compound on the enzyme would explain the multivarious inhibition of myosin ATPase, of superprecipitation, and of the contractile response of smooth muscle.  相似文献   

12.
A scheme for the isolation of Ca,Mg-dependent endonuclease from human spleen lymphocyte nuclei has been developed. The isolation procedure resulted in protein preparations (Mr = 57 kD) possessing an enzymatic activity and stable upon storage for over a period of one year. The enzyme is an endonuclease which predominantly cleaves double-stranded DNA by a mixed single- and double-hit mechanism with the formation of 5'-phosphate and 3'-OH terminal groups. Its maximal activation is induced by Ca2+ plus Mg2+. The enzyme is also active in the presence of Mn2+, Ca2+, Mg2+ and Zn2+ and is inhibited by Co2+. NaCl and KCl (0.15-0.2 M) and p-chloromercuribenzoate (1 mM) also inhibit the enzyme. ATP has no activating effect.  相似文献   

13.
The possible role of the regulatory light chains (LC2) in in vitro assembly of rabbit skeletal and dog cardiac myosins was examined by formation of minifilaments and synthetic thick filaments. After LC2 was removed, the resulting myosin preparations exhibited little aggregation in 0.5 M KCl and 0.05 M potassium phosphate (pH 6.5). Minifilaments migrated as a single, hypersharp peak during sedimentation velocity, but electron microscopic analysis revealed a more destabilized structure for LC2-deficient minifilaments. Thick filaments were formed in buffers containing 0.15 M KCl and the following: 20 mM imidazole; 20 mM imidazole, 5 mM ATP; or 20 mM imidazole, 5 mM ATP, and 5 mM MgCl2, all at pH 7.0. Skeletal and cardiac myosin filaments formed in imidazole buffer alone were bipolar, tapered at both ends, and about 1.6 micron long. Removal of LC2 resulted in the formation of shorter thick filaments (1.2 micron long). This effect could be reversed by reassociation with LC2. Inclusion of ATP in the buffer disrupted the filament structure, resulting in irregular, short filaments (less than 0.6 micron); addition of both ATP and MgCl2 largely reversed the effects of ATP alone. In cardiac myosin filaments, the bare zone diameter increased from 16 nm as measured in control and LC2-recombined samples to 20 nm in LC2-deficient myosin assemblies. These results implicate LC2 in an active role in controlling synthetic thick filament length in both skeletal and cardiac muscles.  相似文献   

14.
J R Schullek  I B Wilson 《Peptides》1989,10(2):431-434
Phosphate, borate, and Tris inhibit angiotensin converting enzyme (ACE), but HEPES buffer is inert. Measurements of substrate inhibition were made in HEPES buffer at pH 7.0 and 25 degrees C and 37 degrees C. Substrate inhibition was marked and goes to completion. A new equation for substrate inhibitions enables one, under favorable circumstances, to determine whether there is cooperativity in the binding of substrate to the inhibitory and active sites. Cooperativity does occur with ACE using Hipp-His-Leu as substrate. The kinetic parameters were measured (Km = 0.21 mM, K* = 0.65 mM at 37 degrees C). The enzyme concentration (1.94 X 10(-8) M) was determined by titration with lisinopril so that kcat (5 X 10(3) at 37 degrees C) could be determined. Using this value and the molecular weight the specific activity of ACE was calculated for different common buffers. The specific activity in HEPES calculated from Vmax was 33.7 units/mg at 37 degrees C.  相似文献   

15.
Vanadate was a potent inhibitor of the membrane-bound (Ca+Mg)-ATPase from rat brain, the concentration required for 50% inhibition under conditions optimal for enzymatic activity being 3 M. Vanadate inhibition increased with the MgCl2 concentration, half-maximal inhibition occurring at 2 mM MgCl2, near the MgCl2 concentration required for half-maximal activation of the ATPase activity. MnCl2 could substitute for MgCl2, and at concentrations of 1 mM (Ca+Mn)-ATPase activity was greater than (Ca+Mg)-ATPase activity, although sensitivity to vanadate was less. Vanadate inhibition increased also with the KCl concentration, half-maximal inhibition occurring at 8 mM, again near the concentration required for half-maximal activation of ATPase activity. By contrast, NaCl stimulated (Ca+Mg)-ATPase activity without potentiating vanadate inhibition. These effects of cations on ATPase activity and vanadate inhibition resemble properties of certain transport ATPases and thus suggest mechanistic and functional similarities.  相似文献   

16.
Fructans are storage carbohydrates found in many temperate grasses. The first enzyme in the biosynthetic pathway of most fructans is sucrose:sucrose fructosyl transferase (SST). In this report, we demonstrate that K+ and ionic strength noncompetitively inhibit the activity of SST from wheat (Triticum aestivum L.) stems. The Ki for this inhibition is high, 122 mM, but in the range of concentrations of K+ found in the tissue (205-314 mM). Addition of KCl to the assay system had no effect on the pH optimum (5.5) or the Km for sucrose (266 mM) but reduced the Vmax. At equivalent ionic strengths, inhibition by choline chloride was about half that of KCl, indicating that inhibition by ionic strength might be responsible for approximately 50% of the KCl inhibition. Inhibition by LiCl and (NH4)2SO4 was similar to that by choline chloride. Soluble invertase activity found in the SST preparations was less sensitive to KCl and more sensitive to choline chloride than was SST. SST from barley (Hordeum vulgare L.) stems and leaves, as well as SST from leaves of orchardgrass (Dactylis glomerata), was also inhibited by KCl. SST from onion (Allium cepa L.) bulbs and asparagus (Asparagus officinalis L.) stems was not inhibited by KCl; thus, inhibition of activity by KCl is not a universal characteristic of SST from all sources.  相似文献   

17.
Centrifuge transport, equilibrium dialysis, and electron paramagnetic resonance studies on the binding of Mn2+ to myosin revealed two sets of noninteracting binding sites which are characterized at low ionic strength (0.016 M KCl) by affinity constants of 10(6) M-1 (Class I) and 10(3) M-1 (Class II), respectively. At 0.6 M KCl concentration, the affinity of Mn2+ for both sets of sites is reduced. The maximum number of binding sites is 2 for the high affinity and 20 to 25 for the low affinity set. Other divalent metal ions displace Mn2+ from the high affinity sites in the following order of effectiveness: Ca greater than Mg = Zn = Co greater than Sr greater than Ni. The inhibitory effects of Mg2+ and Ca2+ upon the Mn2+ binding are competitive with inhibitor constants of 0.75 to 1 mM which is similar to that of the low affinity divalent metal ion binding sites. Exposure of myosin to 37 degrees partially inhibits Mn2+ binding to Class I parallel with inhibition of ATPase activity. The binding of Mn2+ to the high affinity binding sites is not significantly influenced by ADP or PPi, although Mn2+ increases the affinity of ADP binding to myosin at high ionic strength.  相似文献   

18.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

19.
The effects of the neutral salt concentration, pH, and coexistence of myosin on the denaturation of F-actin without ATP at low temperature were studied using the DNase I inhibition assay. The percent denaturation of F-actin gradually increased with a decrease in pH from 8.0 to 5.2, on incubation for 2 weeks in the presence of 50 mM KCl at 0 degrees C. This change was much faster in 0.5 M KCl and more than 75% of the F-actin became denatured on incubation for 1 week at pH 5.2. The buffer composition was found to exert a strong influence on the denaturation of F-actin. That is, there was a tendency for the denaturation of F-actin at pH 6.0 to be faster in MES[2-(N-morpholino)ethanesulfonic acid]-NaOH buffer than in sodium phosphate buffer, the critical concentrations of actin in 0.5 M KCl being 0.31 mg/ml for MES-NaOH buffer and 0.15 mg/ml for sodium phosphate buffer. A sigmoidal relationship was found between the percent denaturation of F-actin and the KCl concentration added, the greatest change occurring at KCl concentrations between 0.25 and 0.75 M. The time courses of the denaturation of F-actin showed that the percent denaturation rose at first and that in time the rate of the increase decreased. In the case of pH 8.0 and 0.5 M KCl, it took about 1 week for the denaturation rate to begin to drop. The pH of 6.0 further promoted the instability of F-actin exposed to high KCl concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号