首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
EZH2, the catalytic subunit of polycomb repressor complex 2, has oncogenic properties, whereas RASSF2A, a Ras association domain family protein, has a tumor suppressor role in many types of human cancer. However, the interrelationship between these two genes remains unclear. Here, we showed that the downregulation of EZH2 reduces CpG island methylation of the RASSF2A promoter, thereby leading to increased RASSF2A expression. Our findings also showed that knockdown of EZH2 increased RASSF2A expression in the human breast cancer cell line MCF‐7 in cooperation with DNMT1. This was similar to the effect of 5‐Aza‐CdR, a DNA methylation inhibitor that reactivates tumor suppressor genes and activated RASSF2A expression in our study. The EZH2 inhibitor DZNep markedly suppressed the proliferation, migration, and invasion of MCF‐7 cells treated with ADR and TAM. EZH2 inhibits the expression of tumor suppressor gene RASSF2A via promoter hypermethylation. Thus, it plays an important role in tumorigenesis and is a potential therapeutic target for the treatment of breast cancer.  相似文献   

5.
6.
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.  相似文献   

7.
8.
We have previously shown that fibroblast growth factor receptor 2 (FGFR2) plays an important role in gastric carcinogenesis. In this study, we assessed DNA methylation status in the promoter region of FGFR2 gene in gastric cancer cell lines, and indicated that this region was highly methylated, compared with FGFR2-expressing gastric cancer cell lines. Moreover, the restoration of FGFR2 expression by treating methylated cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine strongly suggests that the loss of FGFR2 expression may be due to the aberrant hypermethylation in the promoter region of the FGFR2 gene. Thus, our results suggest that the epigenetic silencing of FGFR2 through DNA methylation in gastric cancer may contribute to tumor progression.  相似文献   

9.
10.
Both maspin and glutathione S-transferase pi (GSTp) are implicated as tumor suppressors and downregulated in human prostate cancer. It is well established that GSTp downregulation is through DNA methylation-based silencing. We report here that maspin expression in prostate cancer cell line DU145 reversed GSTp DNA methylation, as measured by methylation- specific PCR, MethyLight assay, and bisulfite sequencing. The effect of maspin on GSTp expression was similar to that of the combination of a synthetic histone deacetylase (HDAC) inhibitor and DNA methylation inhibitor 5-aza-2'-deoxycytidine. Maspin expression also led to an increased level of acetylated histone 3, decreased level of methyl transferase, and methyl-CpG-binding domain proteins at the site of demethylated GSTp promoter DNA. Earlier, we have shown that maspin inhibits HDAC1. In PC3 cells, where both maspin and GSTp are expressed at a reduced level, maspin knockdown led to a significant reduction in GSTp expression, whereas dual knockdown of maspin and HDAC1 barely increased the level of GSTp expression. Thus, HDAC1 may play an essential role in cellular response to maspin-mediated GSTp desilencing. Maspin has been shown to increase tumor cell sensitivity to drug-induced apoptosis. Interestingly, GSTp reexpression in the absence of maspin expression perturbation blocked the phosphorylation of histone 2A.X, the induction of hypoxia-induced factor 1α (HIF-1α), and cell death of LNCaP cells under oxidative stress. Because DNA hypermethylation-based silencing may couple with and depend on histone deacetylation, our study suggests that endogenous HDAC inhibition by maspin may prevent pathologic gene silencing in prostate tumor progression.  相似文献   

11.
The expression of the chondromodulin-I (ChM-I) gene, a cartilage-specific gene, is regulated by the binding of Sp3 to the core promoter region, which is inhibited by the methylation of CpG in the target genome in the osteogenic lineage, osteosarcoma (OS) cells. The histone tails associated with the hypermethylated promoter region of the ChM-I gene were deacetylated by histone deacetylase 2 (HDAC2) in three ChM-I-negative OS cell lines. Treatment with an HDAC inhibitor induced the binding of Sp3 in one cell line, which became ChM-I-positive. This process was associated with acetylation instead of the dimethylation of histone H3 at lysine 9 (H3-K9) and, surprisingly, the demethylation of the core promoter region. The demethylation was transient, and gradually replaced by methylation after a rapid recovery of histone deacetylaion. These results represent an example of the plasticity of differentiation being regulated by the cell-specific plasticity of epigenetic regulation.  相似文献   

12.
EZH2 is a key component of the polycomb PRC2 complex and functions as a histone H3 Lys27 (H3K27) trimethyltransferase. Here we show that EZH2 is down-regulated in human non-small cell lung cancer and low EZH2 expression predicts poor survival. Further we demonstrate that EZH2 inhibits lung cancer cell proliferation and colony formation in vitro and growth in vivo. We found that EZH2 binds to the promoter of Nrf2, where it increases H3K27me3 and represses Nrf2 expression. Finally, Nrf2 seems to be essential for the hyper proliferation of lung cancer cells in the absence of EZH2.  相似文献   

13.
14.
Human DAB2IP (hDAB2IP), a novel GTPase-activating protein modulating the Ras-mediated signaling and tumor necrosis factor-mediated apoptosis, is a potent growth inhibitor in human prostate cancer (PCa). Loss of hDAB2IP expression in PCa is due to altered epigenetic regulation (i.e. DNA methylation and histone modification) of its promoter region. The elevated polycomb Ezh2, a histone methyltransferase, has been associated with PCa progression. In this study, we have demonstrated that an increased Ezh2 expression in normal prostatic epithelial cells can suppress hDAB2IP gene expression. In contrast, knocking down the endogenous Ezh2 levels in PCa by a specific small interfering RNA can increase hDAB2IP expression. The association of Ezh2 complex (including Eed and Suz12) with hDAB2IP gene promoter is also detected in PCa cells but not in normal prostatic epithelial cells. Increased Ezh2 expression in normal prostatic epithelial cells by cDNA transfection facilitates the recruitment of other components of Ezh2 complex to the hDAB2IP promoter region accompanied with the increased levels of methyl histone H3 (H3) and histone deacetylase (HDAC1). Consistently, data from PCa cells transfected with Ezh2 small interfering RNA demonstrated that reduced Ezh2 levels resulted in the dissociation of Ezh2 complex accompanied with decreased levels of both methyl H3 and HDAC1 from hDAB2IP gene promoter. We further unveiled that the methylation status of Lys-27 but not Lys-9 of H3 in hDAB2IP promoter region is consistent with the hDAB2IP levels in both normal prostatic epithelial cells and PCa cells. Together, we conclude that hDAB2IP gene is a target gene of Ezh2 in prostatic epithelium, which provides an underlying mechanism of the down-regulation of hDAB2IP gene in PCa.  相似文献   

15.
HDAC2, one of the class I histone deacetylase regulates epigenetic landscape through histone modification. Because HDAC2 is overexpressed in many cancers, cancer therapeutics against HDAC2 have been developed. Here we show novel mechanism of HDAC2 regulation by E3 ligase RCHY1. We found inverse correlation RCHY1 and HDAC2 levels in tumor tissue from six independent dataset using meta-analysis. Ectopic expression of RCHY1 decreased the level of HDAC2 from cancer cells including p53 wildtype, mutant and null cells. In addition, HDAC2 was increased by RCHY1 knockdown. RCHY1 directly interacts with HDAC2. Ectopic expression of wild type but not RING mutant RCHY1 increased HDAC2 levels. These data provide an evidence that RCHY1 negatively regulates HDAC2.  相似文献   

16.
17.
18.
19.
Superoxide dismutase 3 (SOD3) is a SOD isozyme and plays a key role in extracellular redox homeostasis. We previously demonstrated that histone acetylation is involved in 12-O-tetra-decanoylphorbol-13-acetate (TPA)-elicited SOD3 expression in human monocytic THP-1 cells; however, the molecular mechanisms responsible for its expression have not yet been elucidated in detail. The results of the present study demonstrated that the binding of histone deacetylase 1 (HDAC1) to the SOD3 promoter region contributed to SOD3 silencing in basal THP-1 cells. On the other hand, the dissociation of HDAC1 from the SOD3 promoter region and the enrichment of p300, a histone acetyltransferase (HAT), within that region were observed in TPA-induced THP-1 cells. Myocyte enhancer factor 2 (MEF2) functions as a scaffold protein that interacts with histone deacetylases (HDAC) or HAT and regulates gene expression. The present results showed that the MEF2A and MEF2D function as mediators for TPA-elicited SOD3 expression by interacting with HDAC or p300. Additionally, the knockdown of MEF2A or MEF2D in human skin fibroblasts suppressed SOD3 expression at the mRNA and protein levels. Our results provide an insight into epigenetic regulation of redox gene expression, and may ultimately contribute to suppressing the progression of tumours and vascular diseases.  相似文献   

20.
Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells’ resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号