首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Whittle CA  Johannesson H 《Heredity》2011,107(4):305-314
Currently, little is known about the origin and early evolution of sex chromosomes. This is largely due to the fact that ancient non-recombining sex chromosomes are highly degenerated, and thus provide little information about the early genomic events in their evolution. The Neurospora tetrasperma mating-type (mat) chromosomes contain a young (<6 Mya) and large region (>6.6 Mb) of suppressed recombination, thereby providing a model system to study early stages of sex chromosome evolution. Here, we examined alleles of 207 genes located on the N. tetrasperma mat a and mat A chromosomes to test for signs of genomic alterations at the protein level in the young region of recombination suppression. We report that the N. tetrasperma mat a and mat A chromosomes have each independently accumulated allele-specific non-synonymous codon substitutions in a time-dependent, and gene-specific manner in the recombinationally suppressed region. In addition, examination of the ratio (ω) of non-synonymous substitutions (dN) to synonymous substitutions (dS) using maximum likelihood analyses, indicates that such changes are associated with relaxed purifying selection, a finding consistent with genomic degeneration. We also reveal that sex specific biases in mutation rates or selection pressures are not necessary for genomic alterations in sex chromosomes, and that recombination suppression in itself is sufficient to explain these results. The present findings extend our current understanding of genomic events associated within the young region of recombination suppression in these fungal sex-regulating chromosomes.  相似文献   

2.
A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.  相似文献   

3.
The significance of introgression as an evolutionary force shaping natural populations is well established, especially in animal and plant systems. However, the abundance and size of introgression tracts, and to what degree interspecific gene flow is the result of adaptive processes, are largely unknown. In this study, we present medium coverage genomic data from species of the filamentous ascomycete Neurospora, and we use comparative genomics to investigate the introgression landscape at the genomic level in this model genus. We revealed one large introgression tract in each of the three investigated phylogenetic lineages of Neurospora tetrasperma (sizes of 5.6 Mbp, 5.2 Mbp, and 4.1 Mbp, respectively). The tract is located on the chromosome containing the locus conferring sexual identity, the mating-type (mat) chromosome. The region of introgression is confined to the region of suppressed recombination and is found on one of the two mat chromosomes (mat a). We used Bayesian concordance analyses to exclude incomplete lineage sorting as the cause for the observed pattern, and multilocus genealogies from additional species of Neurospora show that the introgression likely originates from two closely related, freely recombining, heterothallic species (N. hispaniola and N. crassa/N. perkinsii). Finally, we investigated patterns of molecular evolution of the mat chromosome in Neurospora, and we show that introgression is correlated with reduced level of molecular degeneration, consistent with a shorter time of recombination suppression. The chromosome specific (mat) and allele specific (mat a) introgression reported herein comprise the largest introgression tracts reported to date from natural populations. Furthermore, our data contradicts theoretical predictions that introgression should be less likely on sex-determining chromosomes. Taken together, the data presented herein advance our general understanding of introgression as a force shaping eukaryotic genomes.  相似文献   

4.
The origin and early evolution of sex chromosomes are currently poorly understood. The Neurospora tetrasperma mating-type (mat) chromosomes have recently emerged as a model system for the study of early sex chromosome evolution, since they contain a young (<6 million years ago [Mya]), large (>6.6-Mb) region of suppressed recombination. Here we examined preferred-codon usage in 290 genes (121,831 codon positions) in order to test for early signs of genomic degeneration in N. tetrasperma mat chromosomes. We report several key findings about codon usage in the region of recombination suppression, including the following: (i) this region has been subjected to marked and largely independent degeneration among gene alleles; (ii) the level of degeneration is magnified over longer periods of recombination suppression; and (iii) both mat a and mat A chromosomes have been subjected to deterioration. The frequency of shifts from preferred codons to nonpreferred codons is greater for shorter genes than for longer genes, suggesting that short genes play an especially significant role in early sex chromosome evolution. Furthermore, we show that these degenerative changes in codon usage are best explained by altered selection efficiency in the recombinationally suppressed region. These findings demonstrate that the fungus N. tetrasperma provides an effective system for the study of degenerative genomic changes in young regions of recombination suppression in sex-regulating chromosomes.  相似文献   

5.
Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principle, provide N. tetrasperma with a means for facultative outcrossing. This study was conceived as an investigation of the population biology of N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was that the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination on the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes.  相似文献   

6.
Neurospora crassa and related heterothallic ascomycetes produce eight homokaryotic self-sterile ascospores per ascus. In contrast, asci of N. tetrasperma contain four self-fertile ascospores each with nuclei of both mating types (matA and mata). The self-fertile ascospores of N. tetrasperma result from first-division segregation of mating type and nuclear spindle overlap at the second meiotic division and at a subsequent mitotic division. Recently, Merino et al. presented population-genetic evidence that crossing over is suppressed on the mating-type chromosome of N. tetrasperma, thereby preventing second-division segregation of mating type and the formation of self-sterile ascospores. The present study experimentally confirmed suppressed crossing over for a large segment of the mating-type chromosome by examining segregation of markers in crosses of wild strains. Surprisingly, our study also revealed a region on the far left arm where recombination is obligatory. In cytological studies, we demonstrated that suppressed recombination correlates with an extensive unpaired region at pachytene. Taken together, these results suggest an unpaired region adjacent to one or more paired regions, analogous to the nonpairing and pseudoautosomal regions of animal sex chromosomes. The observed pairing and obligate crossover likely reflect mechanisms to ensure chromosome disjunction.  相似文献   

7.
The presence of large genomic regions with suppressed recombination (SR) is a key shared property of some sex- and mating-type determining (mat) chromosomes identified to date in animals, plants, and fungi. Why such regions form and how they evolve remain central questions in evolutionary genetics. The smut fungus Microbotryum lychnis-dioicae is a basidiomycete fungus in which dimorphic mat chromosomes have been reported, but the size, age, and evolutionary dynamics of the SR region remains unresolved. To identify the SR region in M. lychnis-dioicae and to study its evolution, we sequenced 12 genomes (6 per mating type) of this species and identified the genomic contigs that show fixed sequence differences between the mating types. We report that the SR region spans more than half of the mat chromosome (>2.3 Mbp) and that it is of very recent origin (∼2 × 106 years) as the average sequence divergence between mating types was only 2% in the SR region. This contrasts with a much higher divergence in and around the mating-type determining pheromone receptor locus in the SR, suggesting a recent and massive expansion of the SR region. Our results comprise the first reported case of recent massive SR expansion documented in a basidiomycete fungus.  相似文献   

8.
Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.  相似文献   

9.
Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures.  相似文献   

10.
Jacobson DJ 《Genetics》2005,171(2):839-843
The Neurospora tetrasperma mating-type chromosomes have been shown to be structurally heterozygous by reciprocal introgression of these chromosomes between N. tetrasperma and N. crassa. This structural heterozygosity correlates with both a previously described recombination block and cytologically visible unpaired chromosomes at pachytene. Genes on the autosomes are also implicated in blocking recombination.  相似文献   

11.
In the filamentous ascomycete Neurospora tetrasperma, a large (approx. 7 Mbp) region of suppressed recombination surrounds the mating-type (mat) locus. While the remainder of the genome is largely homoallelic, this region of recombinational suppression, extending over 1500 genes, is associated with sequence divergence. Here, we used microarrays to examine how the molecular phenotype of gene expression level is linked to this divergent region, and thus to the mating type. Culturing N. tetrasperma on agar media that induce sexual/female or vegetative/male tissue, we found 196 genes significantly differentially expressed between mat A and mat a mating types. Our data show that the genes exhibiting mat-linked expression are enriched in the region genetically linked to mating type, and sequence and expression divergence are positively correlated. Our results indicate that the phenotype of mat A strains is optimized for traits promoting sexual/female development and the phenotype of mat a strains for vegetative/male development. This discovery of differentially expressed genes associated with mating type provides a link between genotypic and phenotypic divergence in this taxon and illustrates a fungal analogue to sexual dimorphism found among animals and plants.  相似文献   

12.
Genomic regions that determine mating compatibility are subject to distinct evolutionary forces that can lead to a cessation of meiotic recombination and the accumulation of structural changes between members of the homologous chromosome pair. The relatively recent discovery of dimorphic mating-type chromosomes in fungi can aid the understanding of sex chromosome evolution that is common to dioecious plants and animals. For the anther-smut fungus, Microbotryum lychnidis-dioicae (= M. violaceum isolated from Silene latifolia), the extent of recombination cessation on the dimorphic mating-type chromosomes has been conflictingly reported. Comparison of restriction digest optical maps for the two mating-type chromosomes shows that divergence extends over 90% of the chromosome lengths, flanked at either end by two pseudoautosomal regions. Evidence to support the expansion of recombination cessation in stages from the mating-type locus toward the pseudoautosomal regions was not found, but evidence of such expansion could be obscured by ongoing processes that affect genome structure. This study encourages the comparison of forces that may drive large-scale recombination suppression in fungi and other eukaryotes characterized by dimorphic chromosome pairs associated with sexual life cycles.  相似文献   

13.
The benefits of sexual reproduction that outweigh its costs have long puzzled biologists. Increased genetic diversity generated by new allelic combinations, as enhanced by recombination during meiosis, is considered a primary benefit of sex. Sex-determining systems have evolved independently on numerous occasions. One of the most familiar is the use of sex chromosomes in vertebrates. Other eukaryotic groups also use sex chromosomes or smaller sex-determining regions within their chromosomes, such as the mating type loci in the fungi. In these organisms, sexual reproduction and its associated meiotic recombination are controlled by regions of the genome that are themselves blocked in recombination. Non-recombining DNA that is essential for recombination presents a paradox. One hypothesis is that sex-determination requires or leads to highly diverse alleles, establishing this block in recombination. A second hypothesis to account for the common occurrence of these types of sex-determining systems is that they combine mechanisms for recombination suppression and reproductive isolation, thereby promoting the evolution of new species. The fungal kingdom represents the ideal eukaryotic lineage to elucidate the functions of non-recombining regions in sex-determination and speciation.  相似文献   

14.

Background  

The self-fertile filamentous ascomycete Neurospora tetrasperma contains a large (~7 Mbp) and young (< 6 MYA) region of suppressed recombination within its mating-type (mat) chromosomes. The objective of the present study is to reveal the evolutionary history, including key genomic events, associated with the various regions of the mat chromosomes among ten strains representing all the nine known species (lineages) contained within the N. tetrasperma species complex.  相似文献   

15.
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions.  相似文献   

16.
S Sun  YP Hsueh  J Heitman 《PLoS genetics》2012,8(7):e1002810
Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi.  相似文献   

17.
Sex chromosomes in dioecious and polygamous plants evolved as a mechanism for ensuring outcrossing to increase genetic variation in the offspring. Sex specificity has evolved in 75% of plant families by male sterile or female sterile mutations, but well-defined heteromorphic sex chromosomes are known in only four plant families. A pivotal event in sex chromosome evolution, suppression of recombination at the sex determination locus and its neighboring regions, might be lacking in most dioecious species. However, once recombination is suppressed around the sex determination region, an incipient Y chromosome starts to differentiate by accumulating deleterious mutations, transposable element insertions, chromosomal rearrangements, and selection for male-specific alleles. Some plant species have recently evolved homomorphic sex chromosomes near the inception of this evolutionary process, while a few other species have sufficiently diverged heteromorphic sex chromosomes. Comparative analysis of carefully selected plant species together with some fish species promises new insights into the origins of sex chromosomes and the selective forces driving their evolution.  相似文献   

18.
Many eukaryotic taxa inherit a heteromorphic sex chromosome pair. It is a generally accepted hypothesis that the sex chromosome pair is derived from a pair of homologous autosomes that has developed after the occurrence of a sex differentiator in an evolutionary process into two structurally and functionally different partners. In most of the analyzed systems the occurrence of the dominant sex differentiator is paralleled by the suppression of recombination within and close by that region. The recombinational isolation can spread in an evolutionary selection process from neighboring regions finally over the whole chromosome. Suppression of recombination strongly biases the distribution of retrotransposons in the genome. Our results and that from others indicate that the major force driving the evolution of Y chromosomes are retrotransposons, remodeling euchromatic chromosome structures into heterochromatic ones. In our model, intact or already eroded retrotransposons become trapped due to their inherent transposition mechanisms in non-recombining regions. The massive accumulation of retrotransposons interferes strongly with the activity of genes. We hypothesize that Y chromosome degeneration is a stepwise evolutionary process: (1) Massive accumulation of retrotransposons occurs in the non-recombining regions. (2) Heterochromatic nucleation centers are formed as a consequence of genomic defense against invasive parasitic elements; the established nucleation centers become epigenetically inherited. (3) Spreading of heterochromatin from the nucleation centers into flanking regions induces in an adaptive process gene silencing of neighbored genes that could either be still intact or in an already eroded condition, e.g., showing point mutations, deletions, insertions; the retroelements should be subjects to the same forces of deterioration as the genes themselves. (4) Constitutive silenced genes are not committed to the same genetic selection pressure as active genes and therefore more exposed to the decay process. (5) Gene dosage balance is reestablished by the parallel evolution of dosage compensation mechanisms. The evolving secondary sex chromosomes, neo-X and neo-Y, of Drosophila miranda are revealed to be a unique and potent model system to catch the evolutionary Y deterioration process in progress.  相似文献   

19.
Bergero R  Forrest A  Kamau E  Charlesworth D 《Genetics》2007,175(4):1945-1954
Despite its recent evolutionary origin, the sex chromosome system of the plant Silene latifolia shows signs of progressive suppression of recombination having created evolutionary strata of different X-Y divergence on sex chromosomes. However, even after 8 years of effort, this result is based on analyses of five sex-linked gene sequences, and the maximum divergence (and thus the age of this plant's sex chromosome system) has remained uncertain. More genes are therefore needed. Here, by segregation analysis of intron size variants (ISVS) and single nucleotide polymorphisms (SNPs), we identify three new Y-linked genes, one being duplicated on the Y chromosome, and test for evolutionary strata. All the new genes have homologs on the X and Y chromosomes. Synonymous divergence estimated between the X and Y homolog pairs is within the range of those already reported. Genetic mapping of the new X-linked loci shows that the map is the same in all three families that have been studied so far and that X-Y divergence increases with genetic distance from the pseudoautosomal region. We can now conclude that the divergence value is saturated, confirming the cessation of X-Y recombination in the evolution of the sex chromosomes at approximately 10-20 MYA.  相似文献   

20.
Nam K  Ellegren H 《Genetics》2008,180(2):1131-1136
Birds have female heterogamety with Z and W sex chromosomes. These evolved from different autosomal precursor chromosomes than the mammalian X and Y. However, previous work has suggested that the pattern and process of sex chromosome evolution show many similarities across distantly related organisms. Here we show that stepwise restriction of recombination between the protosex chromosomes of birds has resulted in regions of the chicken Z chromosome showing discrete levels of divergence from W homologs (gametologs). The 12 genes analyzed fall into three levels of estimated divergence values, with the most recent divergence (dS = 0.18–0.21) displayed by 6 genes in a region on the Z chromosome corresponding to the interval 1–11 Mb of the assembled genome sequence. Another 4 genes show intermediate divergence (dS = 0.27–0.38) and are located in the interval 16–53 Mb. Two genes (at positions 42 and 50 Mb) with higher dS values are located proximal to the most distal of the 4 genes with intermediate divergence, suggesting an inversion event. The distribution of genes and their divergence indicate at least three evolutionary strata, with estimated times for cessation of recombination between Z and W of 132–150 (stratum 1), 71–99 (stratum 2), and 47–57 (stratum 3) million years ago. An inversion event, or some other form of intrachromosomal rearrangement, subsequent to the formation of strata 1 and 2 has scrambled the gene order to give rise to the nonlinear arrangement of evolutionary strata currently seen on the chicken Z chromosome. These observations suggest that the progressive restriction of recombination is an integral feature of sex chromosome evolution and occurs also in systems of female heterogamety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号