首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
RNA silencing is a natural defense mechanism against genetic stress factors, including viruses. A mutant hordeivirus (Barley stripe mosaic virus [BSMV]) lacking the gammab gene was confined to inoculated leaves in Nicotiana benthamiana, but systemic infection was observed in transgenic N. benthamiana expressing the potyviral silencing suppressor protein HCpro, suggesting that the gammab protein may be a long-distance movement factor and have antisilencing activity. This was shown for gammab proteins of both BSMV and Poa semilatent virus (PSLV), a related hordeivirus. Besides the functions in RNA silencing suppression, gammab and HCpro had analogous effects on symptoms induced by the hordeiviruses. Severe BSMV-induced symptoms were correlated with high HCpro concentrations in the HCpro-transgenic plants, and substitution of the gammab cistron of BSMV with that of PSLV led to greatly increased symptom severity and an altered pattern of viral gene expression. The efficient systemic infection with the chimera was followed by the development of dark green islands (localized recovery from infection) in leaves and exemption of new developing leaves from infection. Recovery and the accumulation of short RNAs diagnostic of RNA silencing in the recovered tissues in wild-type N. benthamiana were suppressed in HCpro-transgenic plants. These results provide evidence that potyviral HCpro and hordeivirus gammab proteins contribute to systemic viral infection, symptom severity, and RNA silencing suppression. HCpro's ability to suppress the recovery of plants from viral infection emphasizes recovery as a manifestation of RNA silencing.  相似文献   

2.
3.
4.
5.
The association of “pathogenesis-related” (PR) proteins with protection from superinfection, systemic acquired resistance and production of localized necrotic lesions was examined with a system using tobacco mosaic virus (TMV) and Nicotiana sylvestris. Leaves of N. sylvestris with a mosaic from earlier inoculation with a systemically infecting strain of TMV (TMV-C) and control plants were challenged with a necrotizing strain of TMV (TMV-P), RNA of TMV-P and turnip mosaic virus (TuMV). TMV-P virions produced localized necrotic lesions only in the dark green areas of the mosaic of TMV-C infected plants. Both RNA of TMV-P and TuMV produced localized necrotic lesions in both light green and dark green areas of the mosaic of TMV-C infected plants. All three challenge inocula produced localized necrotic lesions in previously uninoculated plants. Six days after challenge inoculation proteins were extracted from separated dark green and light green mosaic leaf tissue, and leaf material from control plants. Proteins were separated by electrophoresis in a 5 % polyacrylamide spacer gel and 10 % polyacrylamide running gel. PR proteins were found in tissue where localized necrotic lesions were produced as a result of challenge inoculation, but not in tissue that was not superinfected. PR proteins were not found in light green or dark green mosaic leaf tissue as a result of TMV-C inoculation. No PR proteins were evident in protein extracts from light green tissue challenged with TMV-P, although PR proteins were produced in dark green tissue, where necrosis occurred, from the same leaves. Systemic acquired resistance (reduction in size of lesions formed by a challenge inoculation) to TuMV or RNA of TMV-P and PR protein concentration was measured at various times in light green areas of mosaic leaves where dark green areas of the mosaic leaves had been inoculated with TMV-P. No quantitative or temporal relationship between the onset of resistance and PR protein production was found. It is concluded that PR proteins are a result of pathogen induced necrosis and not significantly involved in the mechanism(s) of viral induced resistance.  相似文献   

6.
H Weber  S Schultze    A J Pfitzner 《Journal of virology》1993,67(11):6432-6438
The Tm-2(2) resistance gene is used in most commercial tomato cultivars for protection against infection with tobacco mosaic virus and its close relative tomato mosaic virus (ToMV). To study the mechanism of this resistance gene, cDNA clones encompassing the complete genome of a ToMV strain (ToMV-2(2)) that was able to break the Tm-2(2) resistance were generated. Chimeric full-length viral cDNA clones were constructed under the control of the cauliflower mosaic virus 35S RNA promoter, combining parts of the wild-type virus and ToMV-2(2). Using these clones in cDNA infection experiments, we showed that the 30-kDa movement protein of ToMV-2(2) is responsible for overcoming the Tm-2(2) resistance gene in the tomato. DNA sequence analysis revealed four amino acid exchanges between the 30-kDa proteins from wild-type ToMV and ToMV-2(2), Lys-130 to Glu, Gly-184 to Glu, Ser-238 to Arg, and Lys-244 to Glu. To clarify the involvement of the altered amino acid residues in the resistance-breaking properties of the ToMV-2(2) movement protein, different combinations of these amino acid exchanges were introduced in the genome of wild-type ToMV. Only one mutant strain which contained two amino acid substitutions, Arg-238 and Glu-244, was able to multiply in Tm-2(2) tomato plants. Both amino acid exchanges are found within the carboxy-terminal region of the movement protein, which displays a high variability among different tobamoviruses and has been shown to be dispensable for virus transport in tobacco plants. These observations suggest that the resistance conferred by the Tm-2(2) gene against ToMV depends on specific recognition events in this host-pathogen interaction rather than interfering with fundamental functions of the 30-kDa protein.  相似文献   

7.
8.
Expression of double-stranded RNA (dsRNA) homologous to virus sequences can effectively interfere with RNA virus infection in plant cells by triggering RNA silencing. Here we applied this approach against a DNA virus, African cassava mosaic virus (ACMV), in its natural host cassava. Transgenic cassava plants were developed to express small interfering RNAs (siRNA) from a CaMV 35S promoter-controlled, intron-containing dsRNA cognate to the common region-containing bidirectional promoter of ACMV DNA-A. In two of three independent transgenic lines, accelerated plant recovery from ACMV-NOg infection was observed, which correlates with the presence of transgene-derived siRNAs 21–24 nt in length. Overall, cassava mosaic disease symptoms were dramatically attenuated in these two lines and less viral DNA accumulation was detected in their leaves than in those of wild-type plants. In a transient replication assay using leaf disks from the two transgenic lines, strongly reduced accumulation of viral single-stranded DNA was observed. Our study suggests that a natural RNA silencing mechanism targeting DNA viruses through production of virus-derived siRNAs is turned on earlier and more efficiently in transgenic plants expressing dsRNA cognate to the viral promoter and common region.  相似文献   

9.
10.

Background

RNA silencing has been implicated in virus symptom development in plants. One common infection symptom in plants is the formation of chlorotic tissue in leaves. Chlorotic and healthy tissue co-occur on a single leaf and form patterns. It has been shown that virus levels in chlorotic tissue are high, while they are low in healthy tissue. Additionally, the presence of siRNAs is confined to the chlorotic spots and the boundaries between healthy and infected tissue. These results strongly indicate that the interaction between virus growth and RNA silencing plays a role in the formation of infection patterns on leaves. However, how RNA silencing leads to the intricate patterns is not known.

Results

Here we elucidate the mechanisms leading to infection patterns and the conditions which lead to the various patterns observed. We present a modeling approach in which we combine intra- and inter-cellular dynamics of RNA silencing and viral growth. We observe that, due to the spread of viruses and the RNA silencing response, parts of the tissue become infected while other parts remain healthy. As is observed in experiments high virus levels coincide with high levels of siRNAs, and siRNAs are also present in the boundaries between infected and healthy tissue. We study how single- and double-stranded cleavage by Dicer and amplification by RNA-dependent RNA polymerase can affect the patterns formed.

Conclusion

This work shows that RNA silencing and virus growth within a cell, and the local spread of virions and siRNAs between cells can explain the heterogeneous spread of virus in leaf tissue, and therewith the observed infection patterns in plants.  相似文献   

11.
Aims: To develop a highly sensitive and rapid protocol for simultaneous detection and differentiation of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in pepper and tomato. In this study, we use the multiplex PCR technique to detect dual infection of these two viruses. Methods and Results: A multiplex RT–PCR method consisting of one‐tube reaction with two primer pairs targeted to replicase genes was developed to simultaneously detect TMV and ToMV in seed samples of pepper and tomato. Specific primers were designed from conserved regions of each of the virus genomes, and their specificity was confirmed by sequencing PCR products. RT–PCR detected up to 10?6 dilution of total RNA extracted from infected leaves. Multiplex RT–PCR revealed the presence of both TMV and ToMV in three of 18 seed samples of tomato and one of 18 seed samples of pepper. Conclusions: The multiplex PCR assay was a cost effective, quick diagnostic technique, which was helpful in differentiating TMV and ToMV accurately. Significance and Impact of the Study: The multiplex PCR assay described in this study is a valuable tool for plant pathology and basic research studies. This method may facilitate better recognition and distinction of TMV and ToMV in both pepper and tomato.  相似文献   

12.
13.
Virus content of leaves of cassava infected by African cassava mosaic virus   总被引:1,自引:0,他引:1  
African cassava mosaic virus (ACMV) was detected in cassava leaves by ELISA. Some normal constituents of cassava leaves interfered with virus detection but leaf extracts of Nicotiana benthamiana did not. The symptom pattern was determined early in the growth of a leaf and subsequently changed little. ACMV was found only in the yellow or yellow green areas of the mosaic pattern. Virus content of the leaves increased with increasing symptom intensity, but decreased with leaf age and ACMV was not detected in mature leaves. Most whiteflies were found on young growing cassava leaves and the number decreased progressively with leaf age. This distribution will aid both the acquisition and inoculation of the virus.  相似文献   

14.
15.
We developed a new method for inhibiting tobacco mosaic virus infection in tobacco plants based on specific RNA hydrolysis induced by a leadzyme. We identified a leadzyme substrate target sequence in genomic tobacco mosaic virus RNA and designed a 16-mer oligoribonucleotide capable of forming a specific leadzyme motif with a five-nucleotide catalytic loop. The synthetic 16-mer RNA was applied with nontoxic, catalytic amount of lead to infected tobacco leaves. We observed inhibition of tobacco mosaic virus infection in tobacco leaves in vivo due to specific tobacco mosaic virus RNA cleavage effected by leadzyme. A significant reduction in tobacco mosaic virus accumulation was observed even when the leadzyme was applied up to 2 h after inoculation of leaves with tobacco mosaic virus. This process, called leadzyme interference, is determined by specific recognition and cleavage of the target site by the RNA catalytic strand in the presence of Pb(2+).  相似文献   

16.
17.
Small RNA-mediated RNA silencing is a widespread antiviral mechanism in plants and other organisms. Many viruses encode suppressors of RNA silencing for counter-defense. The p126 protein encoded by Tobacco mosaic virus (TMV) has been reported to be a suppressor of RNA silencing but the mechanism of its function remains unclear. This protein is unique among the known plant viral silencing suppressors because of its large size and multiple domains. Here, we report that the methyltransferase, helicase, and nonconserved region II (NONII) of p126 each has silencing-suppressor function. The silencing-suppression activities of methyltransferase and helicase can be uncoupled from their enzyme activities. Specific amino acids in NONII previously shown to be crucial for viral accumulation and symptom development are also crucial for silencing suppression. These results suggest that some viral proteins have evolved to possess modular structural domains that can independently interfere with host silencing, and that this may be an effective mechanism of increasing the robustness of a virus.  相似文献   

18.
Mixed infection of Cucumber mosaic virus (CMV) and Turnip mosaic virus (TuMV) induced more severe symptoms on Nicotiana benthamiana than single infection. To dissect the relationships between spatial infection patterns and the 2b protein (2b) of CMV in single or mixed infections, the CMV vectors expressing enhanced green fluorescent or Discosoma sp. red fluorescent proteins (EGFP [EG] or DsRed2 [Ds], respectively were constructed from the same wild-type CMV-Y and used for inoculation onto N. benthamiana. CMV2-A1 vector (C2-A1 [A1]) has a functional 2b while CMV-H1 vector (C2-H1 [H1]) is 2b deficient. As we expected from the 2b function as an RNA silencing suppressor (RSS), in a single infection, A1Ds retained a high level of accumulation at initial infection sites and showed extensive fluorescence in upper, noninoculated leaves, whereas H1Ds disappeared rapidly at initial infection sites and could not spread efficiently in upper, noninoculated leaf tissues. In various mixed infections, we found two phenomena providing novel insights into the relationships among RSS, viral synergism, and interference. First, H1Ds could not spread efficiently from vasculature into nonvascular tissues with or without TuMV, suggesting that RNA silencing was not involved in CMV unloading from vasculature. These results indicated that 2b could promote CMV to unload from vasculature into nonvascular tissues, and that this 2b function might be independent of its RSS activity. Second, we detected spatial interference (local interference) between A1Ds and A1EG in mixed infection with TuMV, between A1Ds (or H1Ds) and TuMV, and between H1Ds and H1EG. This observation suggested that local interference between two viruses was established even in the synergism between CMV and TuMV and, again, RNA silencing did not seem to contribute greatly to this phenomenon.  相似文献   

19.
A tobamovirus infecting capsicum in Australia   总被引:3,自引:0,他引:3  
A tobamovirus infection of Capsicum annuum is recorded for the first time in New South Wales, Australia. The causal virus is described and shown to differ from tobacco (TMV) and tomato (ToMV) mosaic viruses in its host reactions and serology. Seventeen capsicum cultivars were tested for reaction to the Australian isolate and ranked according to symptom severity. Field and glasshouse observations indicated that the virus causes a decrease in height and weight of plants, fruit malformation and leaf mosaic symptoms. It is proposed that the capsicum tobamovirus strains are sufficiently distinctive from TMV and ToMV to be grouped together and designated a separate virus: capsicum mosaic virus (CaMV).  相似文献   

20.
Expression of tobacco mosaic virus RNA in transgenic plants   总被引:8,自引:0,他引:8  
Summary Tobacco mosaic virus (TMV) is a message-sense, single-stranded RNA virus that infects many Solanaceae plants. A full-length cDNA copy of TMV genomic RNA was constructed and introduced into the genomic DNA of tobacco plants using a disarmed Ti plasmid vector. Transformed plants showed typical symptoms of TMV infection, and their leaves contained infectious TMV particles. This is the first example of the expression of RNA virus genomic RNAs in planta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号