首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low density lipoprotein receptor (LDLR) is crucial for cholesterol homeostasis and deficiency in LDLR functions cause hypercholesterolemia. LDLR is a type I transmembrane protein that requires O-glycosylation for stable expression at the cell surface. It has previously been suggested that LDLR O-glycosylation is found N-terminal to the juxtamembrane region. Recently we identified O-glycosylation sites in the linker regions between the characteristic LDLR class A repeats in several LDLR-related receptors using the “SimpleCell” O-glycoproteome shotgun strategy. Herein, we have systematically characterized O-glycosylation sites on recombinant LDLR shed from HEK293 SimpleCells and CHO wild-type cells. We find that the short linker regions between LDLR class A repeats contain an evolutionarily conserved O-glycosylation site at position −1 of the first cysteine residue of most repeats, which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide GalNAc transferases. Probing into which isoform(s) contributed to glycosylation of the linker regions of the LDLR class A repeats by in vitro enzyme assays suggested a major role of GalNAc-T11. This was supported by expression of LDLR in HEK293 cells, where knock-out of the GalNAc-T11 isoform resulted in the loss of glycosylation of three of four linker regions.  相似文献   

2.
Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis.  相似文献   

3.

Background

Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity.

Results

In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred.

Conclusions

We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-349) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer.

Methodology

In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens.

Results

Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002).

Conclusion

Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer.  相似文献   

5.

Background

Protein-O-mannosyltransferases (Pmt''s) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins.

Methodology/Principal Findings

Based on protein similarities, this highly conserved protein family can be divided into three subfamilies: the Pmt1 sub-family, the Pmt2 sub-family and the Pmt4 sub-family. In contrast to Saccharomyces cerevisiae and Candida albicans, but similar to filamentous fungi, three putative PMT genes (PMT1, PMT2, and PMT4) were identified in the genome of the human fungal pathogen Cryptococcus neoformans. Similar to Schizosaccharomyces pombe and C. albicans, C. neoformans PMT2 is an essential gene. In contrast, the pmt1 and pmt4 single mutants are viable; however, the pmt1/pmt4 deletions are synthetically lethal. Mutation of PMT1 and PMT4 resulted in distinct defects in cell morphology and cell integrity. The pmt1 mutant was more susceptible to SDS medium than wild-type strains and the mutant cells were enlarged. The pmt4 mutant grew poorly on high salt medium and demonstrated abnormal septum formation and defects in cell separation. Interestingly, the pmt1 and pmt4 mutants demonstrated variety-specific differences in the levels of susceptibility to osmotic and cell wall stress. Delayed melanin production in the pmt4 mutant was the only alteration of classical virulence-associated phenotypes. However, the pmt1 and pmt4 mutants showed attenuated virulence in a murine inhalation model of cryptococcosis.

Conclusion/Significance

These findings suggest that C. neoformans protein-O-mannosyltransferases play a crucial role in maintaining cell morphology, and that reduced protein-O-glycosylation leads to alterations in stress resistance, cell wall composition, cell integrity, and survival within the host.  相似文献   

6.
N-Glycosylation has long been linked to protein folding and quality control in the endoplasmic reticulum (ER). Recent work has shown that O-linked glycosylation and the corresponding glycosyltransferases also participate in this important function. Notably, Protein O-fucosyltransferase 1 (Ofut1/Pofut1), a soluble, ER localized enzyme that fucosylates Epidermal Growth Factor-like (EGF) repeats, functions as a chaperone involved in the proper localization of the Notch receptor in certain contexts. Pofut2, a related enzyme that modifies Thrombospondin type I repeats (TSRs), has also been hypothesized to play a role in the folding and quality control of TSR-containing proteins. Both enzymes only modify fully folded substrates suggesting that they are able to distinguish between folded and unfolded structures. Pofuts have known physiological relevance and are conserved across metazoans. Though consensus sequences for O-fucosylation have been established and structures of both Pofuts have been studied, the mechanism of how they participate in protein folding is not known. This article discusses past and recent advances made in novel roles for these protein O-glycosyltransferases.  相似文献   

7.
Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland.  相似文献   

8.

Background  

Streptococcus parasanguinis is a primary colonizer of human tooth surfaces and plays an important role in dental plaque formation. Bacterial adhesion and biofilm formation are mediated by long peritrichous fimbriae that are composed of a 200 kDa serine rich glycoprotein named Fap1 (fimbriae-associated protein). Glycosylation and biogenesis of Fap1 are modulated by a gene cluster downstream of the fap1 locus. A gene encoding a glycosylation-associated protein, Gap3, was found to be important for Fap1 glycosylation, long fimbrial formation and Fap1-mediated biofilm formation.  相似文献   

9.

Background

Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins.

Results

The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin β-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit: H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform.

Conclusion

Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.  相似文献   

10.
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.  相似文献   

11.

Objective

To investigate the aerotolerance of Lactobacillus rhamnosus hsryfm 1301 and its influencing factors.

Results

The growth rate of L. rhamnosus hsryfm 1301 weakened noticeably when the concentration of supplemented H2O2 reached 1 mM, and only 2% of all L. rhamnosus hsryfm 1301 cells survived in MRS broth supplemented with 2 mM H2O2 for 1 h. After pretreatment with 0.5 mM H2O2, the surviving cells of L. rhamnosus hsryfm 1301 in the presence of 5 mM H2O2 for 1 h increased from 3.7 to 7.8 log CFU. Acid stress, osmotic stress, and heat stress at 46 °C also enhanced its aerotolerance, while heat stress at 50 °C reduced the tolerance of L. rhamnosus hsryfm 1301 to oxidative stress. Moreover, treatment with 0.5 mM H2O2 increased the heat stress tolerance of L. rhamnosus hsryfm 1301 by approximately 150-fold.

Conclusions

Lactobacillus rhamnosus hsryfm 1301 possesses a stress-inducible defense system against oxidative stress, and the cross-adaptation to different stresses is a promising target to increase the stress tolerance of L. rhamnosus hsryfm 1301 during probiotic food and starter culture production.
  相似文献   

12.

Background

Glycosylation is an important and universal post-translational modification for many proteins, and regulates protein functions. However, simple and rapid methods to analyze glycans on individual proteins have not been available until recently.

Methods/Principal Findings

A new technique to analyze glycopeptides in a highly sensitive manner by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the liquid matrix 3AQ/CHCA was developed recently and we optimized this technique to analyze a small amount of transmembrane protein separated by SDS-PAGE. We used the MALDI-MS method to evaluate glycosylation status of membrane-type 1 matrix metalloproteinase (MT1-MMP). O-glycosylation of MT1-MMP is reported to modulate its protease activity and thereby to affect cancer cell invasion. MT1-MMP expressed in human fibrosarcoma HT1080 cells was immunoprecipitated and resolved by SDS-PAGE. After in-gel tryptic digestion of the protein, a single droplet of the digest was applied directly to the liquid matrix on a MALDI target plate. Concentration of hydrophilic glycopeptides within the central area occurred due to gradual evaporation of the sample solution, whereas nonglycosylated hydrophobic peptides remained at the periphery. This specific separation and concentration of the glycopeptides enabled comprehensive analysis of the MT1-MMP O-glycosylation.

Conclusions/Significance

We demonstrate, for the first time, heterogeneous O-glycosylation profile of a protein by a whole protein analysis using MALDI-MS. Since cancer cells are reported to have altered glycosylation of proteins, this easy-to-use method for glycopeptide analysis opens up the possibility to identify specific glycosylation patterns of proteins that can be used as new biomarkers for malignant tumors.  相似文献   

13.

Background  

Glycosylation is one of the most complex post-translational modifications (PTMs) of proteins in eukaryotic cells. Glycosylation plays an important role in biological processes ranging from protein folding and subcellular localization, to ligand recognition and cell-cell interactions. Experimental identification of glycosylation sites is expensive and laborious. Hence, there is significant interest in the development of computational methods for reliable prediction of glycosylation sites from amino acid sequences.  相似文献   

14.

Background

Lactic acid bacteria (LAB) have been considered as potentially probiotic organisms due to their potential human health properties. This study aimed to evaluate both in vitro and in vivo, the potential probiotic properties of Lactobacillus species isolated from fecal samples of healthy humans in Iran.

Methods and Results

A total of 470 LAB were initially isolated from 53 healthy individual and characterized to species level. Of these, 88 (86%) were Lactobacillus species. Biochemical and genetic fingerprinting with Phene-Plate system (PhP-LB) and RAPD-PCR showed that the isolates were highly diverse consisted of 67(76.1%) and 75 (85.2%) single types (STs) and a diversity indices of 0.994 and 0.997, respectively. These strains were tested for production of adhesion to Caco-2 cells, antibacterial activity, production of B12, anti-proliferative effect and interleukin-8 induction on gut epithelial cell lines and antibiotic resistance against 9 commonly used antibiotics. Strains showing the characteristics consistent with probiotic strains, were further tested for their anti-inflammatory effect in mouse colitis model. Only one L. brevis; one L. rhamnosus and two L. plantarum were shown to have significant probiotic properties. These strains showed shortening the length of colon compared to dextran sulfate sodium and disease activity index (DAI) was also significantly reduced in mouse.

Conclusion

Low number of LAB with potential probiotic activity as well as high diversity of lactobacilli species was evident in Iranian population. It also suggest that specific strains of L. plantarum, L. brevis and L. rhamnosus with anti-inflammatory effect in mouse model of colitis could be used as a potential probiotic candidate in inflammatory bowel disease to decrease the disease activity index.  相似文献   

15.

Background

Glycosylation is one of the most common post-translation modifications with large influences on protein structure and function. The effector function of immunoglobulin G (IgG) alters between pro- and anti-inflammatory, based on its glycosylation. IgG glycan synthesis is highly complex and dynamic.

Methods

With the use of two different analytical methods for assessing IgG glycosylation, we aim to elucidate the link between DNA methylation and glycosylation of IgG by means of epigenome-wide association studies. In total, 3000 individuals from 4 cohorts were analyzed.

Results

The overlap of the results from the two glycan measurement panels yielded DNA methylation of 7 CpG-sites on 5 genomic locations to be associated with IgG glycosylation: cg25189904 (chr.1, GNG12); cg05951221, cg21566642 and cg01940273 (chr.2, ALPPL2); cg05575921 (chr.5, AHRR); cg06126421 (6p21.33); and cg03636183 (chr.19, F2RL3). Mediation analyses with respect to smoking revealed that the effect of smoking on IgG glycosylation may be at least partially mediated via DNA methylation levels at these 7 CpG-sites.

Conclusion

Our results suggest the presence of an indirect link between DNA methylation and IgG glycosylation that may in part capture environmental exposures.

General significance

An epigenome-wide analysis conducted in four population-based cohorts revealed an association between DNA methylation and IgG glycosylation patterns. Presumably, DNA methylation mediates the effect of smoking on IgG glycosylation.  相似文献   

16.
Glycosylation plays a critical role in the biogenesis and function of membrane proteins. Transient receptor potential channel TRPP2 is a nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease. TRPP2 has been shown to be heavily N-glycosylated, but the glycosylation sites and the biological role of N-linked glycosylation have not been investigated. Here we show, using a combination of mass spectrometry and biochemical approaches, that native TRPP2 is glycosylated at five asparagines in the first extracellular loop. Glycosylation is required for the efficient biogenesis of TRPP2 because mutations of the glycosylated asparagines result in strongly decreased protein expression of the ion channel. Wild-type and N-glycosylation-deficient TRPP2 is degraded in lysosomes, as shown by increased TRPP2 protein levels upon chemical inhibition of lysosomal degradation. In addition, using pharmacological and genetic approaches, we demonstrate that glucosidase II (GII) mediates glycan trimming of TRPP2. The non-catalytic β subunit of glucosidase II (GIIβ) is encoded by PRKCSH, one of the genes causing autosomal dominant polycystic liver disease (ADPLD). The impaired GIIβ-dependent glucose trimming of TRPP2 glycosylation in ADPLD may explain the decreased TRPP2 protein expression in Prkcsh−/− mice and the genetic interaction observed between TRPP2 and PRKCSH in ADPLD. These results highlight the biological importance of N-linked glycosylation and GII-mediated glycan trimming in the control of biogenesis and stability of TRPP2.  相似文献   

17.
The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is one of the few glycosylated proteins found in Escherichia coli. Glycosylation is mediated by a specific heptosyltransferase encoded by the aah gene, but little is known about the role of this modification and the mechanism involved. In this study, we identified several peptides of AIDA-I modified by the addition of heptoses by use of mass spectrometry and N-terminal sequencing of proteolytic fragments of AIDA-I. One threonine and 15 serine residues were identified as bearing heptoses, thus demonstrating for the first time that AIDA-I is O-glycosylated. We observed that unglycosylated AIDA-I is expressed in smaller amounts than its glycosylated counterpart and shows extensive signs of degradation upon heat extraction. We also observed that unglycosylated AIDA-I is more sensitive to proteases and induces important extracytoplasmic stress. Lastly, as was previously shown, we noted that glycosylation is required for AIDA-I to mediate adhesion to cultured epithelial cells, but purified mature AIDA-I fused to GST was found to bind in vitro to cells whether or not it was glycosylated. Taken together, our results suggest that glycosylation is required to ensure a normal conformation of AIDA-I and may be only indirectly necessary for its cell-binding function.  相似文献   

18.

Introduction

Glycosylations range among the most common posttranslational modifications with an estimated 50% of all proteins supposed to be glycosylated. These modifications are required for essential cellular processes including cell–cell recognition, protein structure and activity, e.g., of surface receptors, as well as subcellular localization of proteins. Beside the elucidation of the carbohydrate structures, the annotation of glycosylation sites is of primary interest as a basis for subsequent functional characterization. Although mass spectrometry is the method of choice for large-scale analysis of glycosylation sites, it requires initial enrichment of glycopeptides prior mass spectrometric detection in most cases.

Materials and Methods

In this paper, we present a novel approach for glycopeptide enrichment by electrostatic repulsion hydrophilic interaction chromatography (ERLIC). Glycopeptides were separated from the bulk of non-modified peptides and gradually eluted from the stationary phase with potential for isoform resolution. Applied to human platelets, 125 glycosylation sites on 66 proteins were identified including major platelet glycoproteins responsible for cellular function.

Conclusion

These sites add a major contribution to the now more than 250 glycosylation sites annotated for platelets, which enable the clinically relevant design of quantification assays for platelet glycoproteins.  相似文献   

19.

Background

Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp) and, in Gram-negative bacteria, further triacylated by lipoprotein N-acyl transferase (Lnt). The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2) involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyprenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown.

Results

In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX) in C. glutamicum Δppm1 and Δppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the Δppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis was overexpressed.

Conclusion

Together, these results show for the first time that Cg-Ppm1 (Ppm synthase) and Cg-Ppm2 (Lnt) operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.  相似文献   

20.

Background

Candidiasis in HIV/AIDS patients continues to be a public health problem. Antifungal therapies are not always effective and may result in complications, such as the development of drug-resistant strains of Candida species.

Objectives

This study evaluated the impact of probiotic consumption on Candida colonization of the oral and vaginal mucosa.

Patients/Methods

A pilot study was conducted in 24 women (17 HIV-infected, 7 HIV-uninfected) from the Women’s Interagency HIV Study. The women underwent a 60-day initiation period with no probiotic consumption, followed by two 15-day consumption periods, with a different probiotic yogurt (DanActive? or YoPlus? yogurt) during each interval. There was a 30-day washout period between the two yogurt consumption periods. Oral and vaginal culture swabs were collected on days 0, 60, 74, and 120. Candida was detected by inoculating each swab in both Sabouraud’s dextrose agar with or without chloramphenicol and CHROMagar.

Results

Less fungal colonization among women was observed when the women consumed probiotic yogurts (54 % of the women had vaginal fungal colonization during the non-probiotic yogurt consumption period, 29 % during the DanActive? period, and 38 % during YoPlus? yogurt consumption period), and HIV-infected women had significantly lower vaginal fungal colonization after they consumed DanActive? yogurt compared to the non-intervention periods (54 vs 29 %, p = 0.03).

Conclusions

These data are promising, but as expected in a small pilot study, there were some significant changes but also some areas where colonization was not changed. This type of conflicting data is supportive of the need for a larger trial to further elucidate the role of probiotic yogurts in fungal growth in HIV-infected women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号