首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Human papillomavirus type 16 (HPV-16) 5′-splice site SD3632 is used exclusively to produce late L1 mRNAs. We identified a 34-nt splicing inhibitory element located immediately upstream of HPV-16 late 5′-splice site SD3632. Two AUAGUA motifs located in these 34 nt inhibited SD3632. Two nucleotide substitutions in each of the HPV-16 specific AUAGUA motifs alleviated splicing inhibition and induced late L1 mRNA production from episomal forms of the HPV-16 genome in primary human keratinocytes. The AUAGUA motifs bind specifically not only to the heterogeneous nuclear RNP (hnRNP) D family of RNA-binding proteins including hnRNP D/AUF, hnRNP DL and hnRNP AB but also to hnRNP A2/B1. Knock-down of these proteins induced HPV-16 late L1 mRNA expression, and overexpression of hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP D37 and hnRNP D40 further suppressed L1 mRNA expression. This inhibition may allow HPV-16 to hide from the immune system and establish long-term persistent infections with enhanced risk at progressing to cancer. There is an inverse correlation between expression of hnRNP D proteins and hnRNP A2/B1 and HPV-16 L1 production in the cervical epithelium, as well as in cervical cancer, supporting the conclusion that hnRNP D proteins and A2/B1 inhibit HPV-16 L1 mRNA production.  相似文献   

2.
In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5′-splice site SD3632; produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c), and HuR that are known to regulate HPV16 late gene expression; or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C) family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5′-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression.  相似文献   

3.
4.
Production of human papillomavirus type 16 (HPV-16) virus particles is totally dependent on the differentiation-dependent induction of viral L1 and L2 late gene expression. The early polyadenylation signal in HPV-16 plays a major role in the switch from the early to the late, productive stage of the viral life cycle. Here, we show that the L2 coding region of HPV-16 contains RNA elements that are necessary for polyadenylation at the early polyadenylation signal. Consecutive mutations in six GGG motifs located 174 nucleotides downstream of the polyadenylation signal resulted in a gradual decrease in polyadenylation at the early polyadenylation signal. This caused read-through into the late region, followed by production of the late mRNAs encoding L1 and L2. Binding of hnRNP H to the various triple-G mutants correlated with functional activity of the HPV-16 early polyadenylation signal. In addition, the polyadenylation factor CStF-64 was also found to interact specifically with the region in L2 located 174 nucleotides downstream of the early polyadenylation signal. Staining of cervix epithelium with anti-hnRNP H-specific antiserum revealed high expression levels of hnRNP H in the lower layers of cervical epithelium and a loss of hnRNP H production in the superficial layers, supporting a model in which a differentiation-dependent down regulation of hnRNP H causes a decrease in HPV-16 early polyadenylation and an induction of late gene expression.  相似文献   

5.
Zhao X  Rush M  Schwartz S 《Journal of virology》2004,78(20):10888-10905
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.  相似文献   

6.
Polypyrimidine tract binding protein (PTB) is a major hnRNP protein with multiple roles in mRNA metabolism, including regulation of alternative splicing and internal ribosome entry site-driven translation. We show here that a fourfold overexpression of PTB results in a 75% reduction of mRNA levels produced from transfected gene constructs with different polyadenylation signals (pA signals). This effect is due to the reduced efficiency of mRNA 3' end cleavage, and in vitro analysis reveals that PTB competes with CstF for recognition of the pA signal's pyrimidine-rich downstream sequence element. This may be analogous to its role in alternative splicing, where PTB competes with U2AF for binding to pyrimidine-rich intronic sequences. The pA signal of the C2 complement gene unusually possesses a PTB-dependent upstream sequence, so that knockdown of PTB expression by RNA interference reduces C2 mRNA expression even though PTB overexpression still inhibits polyadenylation. Consequently, we show that PTB can act as a regulator of mRNA expression through both its negative and positive effects on mRNA 3' end processing.  相似文献   

7.
Rush M  Zhao X  Schwartz S 《Journal of virology》2005,79(18):12002-12015
Successful inhibition of human papillomavirus type 16 (HPV-16) late gene expression early in the life cycle is essential for persistence of infection, the highest risk factor for cervical cancer. Our study aimed to locate regulatory RNA elements in the early region of HPV-16 that influence late gene expression. For this purpose, subgenomic HPV-16 expression plasmids under control of the strong human cytomegalovirus immediate early promoter were used. An exonic splicing enhancer that firmly supported the use of the E4 3' splice site at position 3358 in the early region of the HPV-16 genome was identified. The enhancer was mapped to a 65-nucleotide AC-rich sequence located approximately 100 nucleotides downstream of the position 3358 3' splice site. Deletion of the enhancer caused loss of both splicing at the upstream position 3358 3' splice site and polyadenylation at the early polyadenylation signal, pAE. Direct splicing occurred at the competing L1 3' splice site at position 5639 in the late region. Optimization of the position 3358 3' splice site restored splicing to that site and polyadenylation at pAE. Additionally, a sequence of 40 nucleotides with a negative effect on late mRNA production was located immediately downstream of the enhancer. As the E4 3' splice site is employed by both early and late mRNAs, the enhancer constitutes a key regulator of temporal HPV-16 gene expression, which is required for early mRNA production as well as for the inhibition of premature late gene expression.  相似文献   

8.
9.
10.
We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.  相似文献   

11.
Many human papillomavirus (HPV)-positive high-grade lesions and cancers of the uterine cervix harbor integrated HPV genomes expressing the E6 and E7 oncogenes from chimeric virus-cell mRNAs, but less is known about HPV integration in head and neck cancer (HNC). Here we compared viral DNA status and E6-E7 mRNA sequences in HPV-16-positive HNC tumors to those in independent human keratinocyte cell clones derived from primary tonsillar or foreskin epithelia immortalized with HPV-16 genomes. Three of nine HNC tumors and epithelial clones containing unintegrated HPV-16 genomes expressed mRNAs spliced from HPV-16 SD880 to SA3358 and terminating at the viral early gene p(A) signal. In contrast, most integrated HPV genomes in six HNCs and a set of 31 keratinocyte clones expressed HPV-16 major early promoter (MEP)-initiated mRNAs spliced from viral SD880 directly to diverse cellular sequences, with a minority spliced to SA3358 followed by a cellular DNA junction. Sequence analysis of chimeric virus-cell mRNAs from HNC tumors and keratinocyte clones identified viral integration sites in a variety of chromosomes, with some located in or near growth control genes, including the c-myc protooncogene and the gene encoding FAP-1 phosphatase. Taken together, these findings support the hypothesis that HPV integration in cancers is a stochastic process resulting in clonal selection of aggressively expanding cells with altered gene expression of integrated HPV genomes and potential perturbations of cellular genes at or near viral integration sites. Furthermore, our results demonstrate that this selection also takes place and can be studied in primary human keratinocytes in culture.  相似文献   

12.
hnRNPK and hnRNP E1/E2 mediate translational silencing of cellular and viral mRNAs in a differentiation-dependent way by binding to specific regulatory sequences. The translation of 15-lipoxygenase (LOX) mRNA in erythroid precursor cells and of the L2 mRNA of human papilloma virus type 16 (HPV-16) in squamous epithelial cells is silenced when either of these cells is immature and is activated in maturing cells by unknown mechanisms. Here we address the question of how the silenced mRNA can be translationally activated. We show that hnRNP K and the c-Src kinase specifically interact with each other, leading to c-Src activation and tyrosine phosphorylation of hnRNP K in vivo and in vitro. c-Src-mediated phosphorylation reversibly inhibits the binding of hnRNP K to the differentiation control element (DICE) of the LOX mRNA 3' untranslated region in vitro and specifically derepresses the translation of DICE-bearing mRNAs in vivo. Our results establish a novel role of c-Src kinase in translational gene regulation and reveal a mechanism by which silenced mRNAs can be translationally activated.  相似文献   

13.
S L Chen  Y K Lin  L Y Li  Y P Tsao  H Y Lo  W B Wang    T C Tsai 《Journal of virology》1996,70(12):8558-8563
Human papillomavirus type 11 (HPV-11) and HPV-16 contain an E5 gene that can induce c-fos gene expression in mouse fibroblasts. This study investigated the human c-fos promoter characteristics by mapping the c-fos promoter sequence with several deletion and point mutants that confer responsiveness to E5 of HPV-11 or HPV-16. The mutant studies show that NF1 binding sequences within the c-fos promoter were crucial for the induction of the c-fos gene by E5, and the gel shift assay study suggested that E5 of both HPV-11 and HPV-16 is associated, perhaps indirectly, with this NF1 element in the transactivation of the human c-fos promoter. Using an inducible system, we demonstrate that increased induction of the HPV-11 E5 gene in cells led to increased transactivation of the NF1 element. In addition, the transactivating activity of a series of HPV-11 E5 mutants on the NF1 element had a strong correlation with their respective transforming activities.  相似文献   

14.
We have investigated the role of the human papillomavirus type 16 (HPV-16) early untranslated region (3' UTR) in HPV-16 gene expression. We found that deletion of the early 3' UTR reduced the utilization of the early polyadenylation signal and, as a consequence, resulted in read-through into the late region and production of late L1 and L2 mRNAs. Deletion of the U-rich 3' half of the early 3' UTR had a similar effect, demonstrating that the 57-nucleotide U-rich region acted as an enhancing upstream element on the early polyadenylation signal. In accordance with this, the newly identified hFip1 protein, which has been shown to enhance polyadenylation through U-rich upstream elements, interacted specifically with the HPV-16 upstream element. This upstream element also interacted specifically with CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein, suggesting that these factors were either enhancing or regulating polyadenylation at the HPV-16 early polyadenylation signal. Mutational inactivation of the early polyadenylation signal also resulted in increased late mRNA production. However, the effect was reduced by the activation of upstream cryptic polyadenylation signals, demonstrating the presence of additional strong RNA elements downstream of the early polyadenylation signal that direct cleavage and polyadenylation to this region of the HPV-16 genome. In addition, we identified a 3' splice site at genomic position 742 in the early region with the potential to produce E1 and E4 mRNAs on which the E1 and E4 open reading frames are preceded only by the suboptimal E6 AUG. These mRNAs would therefore be more efficiently translated into E1 and E4 than previously described HPV-16 E1 and E4 mRNAs on which E1 and E4 are preceded by both E6 and E7 AUGs.  相似文献   

15.
Splicing of the chicken beta-tropomyosin exon 6A is stimulated, both in vivo and in vitro, by an intronic pyrimidine-rich element (S4) located 37 nucleotides downstream of exon 6A. Several pyrimidine-rich sequences are able to substitute for the natural S4 enhancer with various stimulatory effects. We show that the different enhancer sequences recruit U1 small nuclear ribonucleoprotein (SnRNP) to the exon 6A 5' splice site, with an efficiency that correlates with the splicing activation. By using RNA affinity and two-dimensional gel electrophoresis, we characterized several proteins that bind to the different enhancer sequences. Heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP I (polypyrimidine track-binding protein, PTB) exhibit a higher level of interaction with the strong enhancer sequences (S4) than with the weakest enhancers. Functional analysis shows that hnRNP K is a component of the enhancer complex that promotes exon 6A splicing through the wild-type S4 sequence. The addition of recombinant hnRNP K to nuclear extracts preincubated with poly(rC) RNA competitor completely restores splicing efficiency to the original level. hnRNP I (PTB) was also found associated with the strong enhancer sequences. Its function in the splicing of exon 6A is discussed.  相似文献   

16.
17.
18.
In the human papillomavirus type 16 genome, three late mRNA putative 3' processing signals, designated LP1, LP2, and LP3, are located downstream of the late coding region. Our results show, both in vitro and in vivo, that in HeLa cells, the LP2 signal functions. Thus, the restriction in human papillomavirus type 16 late-gene expression observed in HeLa cells and other nondifferentiated epithelial cells is not achieved by regulation of late mRNA poly(A) site usage. Interestingly, alteration of three nucleotides in the GU-rich downstream sequence element converts the nonfunctional LP1 to an efficient 3' processing site, suggesting that LP1 may function in cell types other than HeLa, such as differentiated keratinocytes. Our transfection studies have identified a negative regulatory element located immediately upstream of the late mRNA 3' processing signals; this element was not associated with any alteration in 3' processing and may act as an mRNA instability element.  相似文献   

19.
丙酮酸激酶是糖酵解的关键酶之一,丙酮酸激酶m基因前mRNA(pre-mRNA)通过可变剪接产生M1和M2型两种丙酮酸激酶异构体,2种异构体的选择性表达决定肿瘤细胞的代谢表型,改变肿瘤细胞的增殖和生长。因此,调控丙酮酸激酶可变剪接,对于控制肿瘤细胞的生长代谢十分重要。研究发现,核不均一核糖核蛋白(hnRNP)A1/A2及多聚嘧啶结合蛋白(PTB,又称hnRNPⅠ)具有调控丙酮酸激酶前mRNA可变剪接的作用,并且致癌转录因子c-Myc与hnRNP A1/A2及PTB在肿瘤细胞中的过表达密切相关。我们结合相关研究进展,简要综述丙酮酸激酶可变剪接调控机制。  相似文献   

20.
The 3′ untranslated region (3′UTR) of human astroviruses (HAstV) consists of two hairpin structures (helix I and II) joined by a linker harboring a conserved PTB/hnRNP1 binding site. The identification and characterization of cellular proteins that interact with the 3′UTR of HAstV-8 virus will help to uncover cellular requirements for viral functions. To this end, mobility shift assays and UV cross-linking were performed with uninfected and HAstV-8-infected cell extracts and HAstV-8 3′UTR probes. Two RNA-protein complexes (CI and CII) were recruited into the 3′UTR. Complex CII formation was compromised with cold homologous RNA, and seven proteins of 35, 40, 45, 50, 52, 57/60 and 75 kDa were cross-linked to the 3′UTR. Supermobility shift assays indicated that PTB/hnRNP1 is part of this complex, and 3′UTR-crosslinked PTB/hnRNP1 was immunoprecipitated from HAstV-8 infected cell-membrane extracts. Also, immunofluorescence analyses revealed that PTB/hnRNP1 is distributed in the nucleus and cytoplasm of uninfected cells, but it is mainly localized perinuclearly in the cytoplasm of HAstV-8 infected cells. Furthermore, the minimal 3′UTR sequences recognized by recombinant PTB are those conforming helix I, and an intact PTB/hnRNP1-binding site. Finally, small interfering RNA-mediated PTB/hnRNP1 silencing reduced synthesis viral genome and virus yield in CaCo2 cells, suggesting that PTB/hnRNP1 is required for HAstV replication. In conclusion, PTB/hnRNP1 binds to the 3′UTR HAstV-8 and is required or participates in viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号