共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Beenken KE Dunman PM McAleese F Macapagal D Murphy E Projan SJ Blevins JS Smeltzer MS 《Journal of bacteriology》2004,186(14):4665-4684
3.
Shompole S Henon KT Liou LE Dziewanowska K Bohach GA Bayles KW 《Molecular microbiology》2003,49(4):919-927
Staphylococcus aureus invades a variety of mammalian cells and escapes from the endosome to multiply in the cytoplasm. We had previously hypothesized that the molecular events leading to escape of S. aureus from the endosome involved the Agr virulence factor regulatory system. In this report we demonstrate that temporal changes in intracellular activation of the Agr regulon correlates with expression of membrane active toxins. Also, the initial expression of Agr by even small numbers of staphylococci resulted in the permeabilization of the endosomal membrane and the eventual escape of bacteria into the cytoplasm by 3 h post invasion. After Agr downregulation, a second peak of expression coincided with increased permeability of the host cell membrane. In contrast to the parental strain, an Agr-mutant was unable to escape into the cytoplasm and was observed in intact endosomes as late as 5 h post invasion. These data provide evidence that staphylococcal virulence factor production during invasion of host cells is mediated by an Agr-dependent process that is most accurately described in the context of diffusion sensing. 相似文献
4.
5.
《Bioorganic & medicinal chemistry letters》2014,24(21):5076-5080
Staphylococcus aureus and Staphylococcus epidermidis are recognized as the most frequent cause of biofilm-associated nosocomial and indwelling medical device infections. Biofilm-associated infections are known to be highly resistant to our current arsenal of clinically used antibiotics and antibacterial agents. To exacerbate this problem, no therapeutic option exists that targets biofilm-dependent machinery critical to Staphylococcal biofilm formation and maintenance. Here, we describe the discovery of a series of quinoline small molecules that demonstrate potent biofilm dispersal activity against methicillin-resistant S. aureus and S. epidermidis using a scaffold hopping strategy. This interesting class of quinolines also has select synthetic analogues that demonstrate potent antibacterial activity and biofilm inhibition against S. aureus and S. epidermidis. 相似文献
6.
Christian Traba 《Biofouling》2013,29(7):763-772
Formation of bacterial biofilms at solid–liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections. 相似文献
7.
Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections. 相似文献
8.
Yarwood JM Paquette KM Tikh IB Volper EM Greenberg EP 《Journal of bacteriology》2007,189(22):7961-7967
9.
10.
11.
Antonio Di Stefano Eleonora D'Aurizio Oriana Trubiani Rossella Grande Emanuela Di Campli Mara Di Giulio Soraya Di Bartolomeo Piera Sozio Antonio Iannitelli Antonia Nostro Luigina Cellini 《Microbial biotechnology》2009,2(6):634-641
The viscoelastic properties of mono‐microbial biofilms produced by ocular and reference staphylococcal strains were investigated. The microorganisms were characterized for their haemolytic activity and agr typing and the biofilms, grown on stainless steel surface under static conditions, were analysed by Confocal Laser Scanning Microscopy. Static and dynamic rheometric tests were carried out to determine the steady‐flow viscosity and the elastic and viscous moduli. The analysed biofilms showed the typical time‐dependent behaviour of viscoelastic materials with considerable elasticity and mechanical stability except for Staphylococcus aureus ATCC 29213 biofilm which showed a very fragile structure. In particular, S. aureus 6ME biofilm was more compact than other staphylococcal biofilms studied with a yield stress ranging between 2 and 3 Pa. The data obtained in this work could represent a starting point for developing new therapeutic strategies against biofilm‐associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier. 相似文献
12.
《生物化学与生物物理学报:生物膜》2018,1860(3):749-756
Staphylococcus aureus biofilms pose a serious clinical threat as reservoirs for persistent infections. Despite this clinical significance, the composition and mechanism of formation of S. aureus biofilms are unknown. To address these problems, we used solid-state NMR to examine S. aureus (SA113), a strong biofilm-forming strain. We labeled whole cells and cell walls of planktonic cells, young biofilms formed for 12–24 h after stationary phase, and more mature biofilms formed for up to 60 h after stationary phase. All samples were labeled either by (i) [15N]glycine and l-[1-13C]threonine, or in separate experiments, by (ii) l-[2-13C,15N]leucine. We then measured 13C-15N direct bonds by C{N} rotational-echo double resonance (REDOR). The increase in peptidoglycan stems that have bridges connected to a surface protein was determined directly by a cell-wall double difference (biofilm REDOR difference minus planktonic REDOR difference). This procedure eliminates errors arising from differences in 15N isotopic enrichments and from the routing of 13C label from threonine degradation to glycine. For both planktonic cells and the mature biofilm, 20% of pentaglycyl bridges are not cross-linked and are potential surface-protein attachment sites. None of these sites has a surface protein attached in the planktonic cells, but one-fourth have a surface protein attached in the mature biofilm. Moreover, the leucine-label shows that the concentration of β-strands in leucine-rich regions doubles in the mature biofilm. Thus, a primary event in establishing a S. aureus biofilm is extensive decoration of the cell surface with surface proteins that are linked covalently to the cell wall and promote cell-cell adhesion. 相似文献
13.
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a large number of chronic infections due to its ability to form robust biofilms. Herein, the authors evaluated the anti-biofilm activity of a Staphylococcus specific chimeric lysin ClyH on MRSA biofilms. ClyH is known to be active against planktonic MRSA cells in vitro and in vivo. The minimum concentrations for biofilm eradication (MCBE) of ClyH were 6.2–50?mg?l?1, much lower than those of antibiotics. Scanning electron microscope (SEM) analysis revealed that ClyH eliminated MRSA biofilms through cell lytic activity in a time-dependent manner. Viable plate counts and kinetic analysis demonstrated that biofilms of different ages displayed varying susceptibility to ClyH. Together with previously demonstrated in vivo efficacy of ClyH against MRSA, the degradation efficacy against biofilms of different ages indicates that ClyH could be used to remove MRSA biofilms in vivo. 相似文献
14.
Looniva Shrestha Shizuo Kayama Michiko Sasaki Fuminori Kato Junzo Hisatsune Keiko Tsuruda Kazuhisa Koizumi Nobuyuki Tatsukawa Liansheng Yu Kei Takeda Motoyuki Sugai 《Microbiology and immunology》2016,60(3):148-159
A novel benzimidazole molecule that was identified in a small‐molecule screen and is known as antibiofilm compound 1 (ABC‐1) has been found to prevent bacterial biofilm formation by multiple bacterial pathogens, including Staphylococcus aureus, without affecting bacterial growth. Here, the biofilm inhibiting ability of 156 μM ABC‐1 was tested in various biofilm‐forming strains of S. aureus. It was demonstrated that ABC‐1 inhibits biofilm formation by these strains at micromolar concentrations regardless of the strains' dependence on Polysaccharide Intercellular Adhesin (PIA), cell wall‐associated protein dependent or cell wall‐ associated extracellular DNA (eDNA). Of note, ABC‐1 treatment primarily inhibited Protein A (SpA) expression in all strains tested. spa gene disruption showed decreased biofilm formation; however, the mutants still produced more biofilm than ABC‐1 treated strains, implying that ABC‐1 affects not only SpA but also other factors. Indeed, ABC‐1 also attenuated the accumulation of PIA and eDNA on cell surface. Our results suggest that ABC‐1 has pleotropic effects on several biofilm components and thus inhibits biofilm formation by S. aureus. 相似文献
15.
16.
17.
Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo 总被引:1,自引:0,他引:1
Thurlow LR Hanke ML Fritz T Angle A Aldrich A Williams SH Engebretsen IL Bayles KW Horswill AR Kielian T 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(11):6585-6596
Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host. 相似文献
18.
Aims: Research on biofilms requires validated quantitative models that focus both on matrix and viable bacterial mass. In this study, a new microplate model for the detection of Staphylococcus aureus biofilms was developed. Methods and Results: Dimethyl methylene blue (DMMB) dye was used to quantify biofilm matrix colorimetrically. Initially developed for the detection of glycosaminoglycans, the DMMB protocol was optimized for S. aureus biofilm research. In addition, the redox indicator resazurin was used to determine the viable bacterial biofilm burden. Conclusion: A new, simple and reproducible microplate test system based on DMMB and resazurin, offering a reliable differentiation between biofilm matrix and cellular activity, was developed and validated for the detection of S. aureus biofilms. Significance and Impact of the Study: The DMMB–resazurin microtitre plate model is a valuable tool for high capacity screening of biocides and for the development of synergistic mixtures of biocides, destroying both biofilm matrix and bacteria. 相似文献
19.
Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms
Kelly Schwartz Mahesh Ganesan David E. Payne Michael J. Solomon Blaise R. Boles 《Molecular microbiology》2016,99(1):123-134
Persistent staphylococcal infections often involve surface‐associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co‐ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. 相似文献
20.
Yang L Liu Y Markussen T Høiby N Tolker-Nielsen T Molin S 《FEMS immunology and medical microbiology》2011,62(3):339-347
Biofilm infections may not simply be the result of colonization by one bacterium, but rather the consequence of pathogenic contributions from several bacteria. Interspecies interactions of different organisms in mixed-species biofilms remain largely unexplained, but knowledge of these is very important for understanding of biofilm physiology and the treatment of biofilm-related infectious diseases. Here, we have investigated interactions of two of the major bacterial species of cystic fibrosis lung microbial communities -Pseudomonas aeruginosa and Staphylococcus aureus- when grown in co-culture biofilms. By growing co-culture biofilms of S. aureus with P. aeruginosa mutants in a flow-chamber system and observing them using confocal laser scanning microscopy, we show that wild-type P. aeruginosa PAO1 facilitates S. aureus microcolony formation. In contrast, P. aeruginosa mucA and rpoN mutants do not facilitate S. aureus microcolony formation and tend to outcompete S. aureus in co-culture biofilms. Further investigations reveal that extracellular DNA (eDNA) plays an important role in S. aureus microcolony formation and that P. aeruginosa type IV pili are required for this process, probably through their ability to bind to eDNA. Furthermore, P. aeruginosa is able to protect S. aureus against Dictyostelium discoideum phagocytosis in co-culture biofilms. 相似文献