首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

Background

Upregulation of nuclear factor kappa B (NF??B) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NF??B, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro.

Methods

We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment.

Results

Neuropeptide (NP) stimulation induced nuclear translocation of NF??B in a dose-dependent manner in AI cells, also evident as reduced total inhibitor ??B (I??B) levels and increased DNA binding in EMSA. These effects were preceded by increased 20?S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NF??B, I??B kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA.

Conclusions

Our results support evidence for a direct mechanistic connection between the NPs and NF??B/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state.  相似文献   

2.

Background

Mutations in SCO2 cause cytochrome c oxidase deficiency (COX) and a fatal infantile cardioencephalomyopathy. SCO2 encodes a protein involved in COX copper metabolism; supplementation with copper salts rescues the defect in patients?? cells. Bezafibrate (BZF), an approved hypolipidemic agent, ameliorates the COX deficiency in mice with mutations in COX10, another COX-assembly gene.

Methods

We have investigated the effect of BZF and copper in cells with SCO2 mutations using spectrophotometric methods to analyse respiratory chain activities and a luciferase assay to measure ATP production..

Results

Individual mitochondrial enzymes displayed different responses to BZF. COX activity increased by about 40% above basal levels (both in controls and patients), with SCO2 cells reaching 75-80% COX activity compared to untreated controls. The increase in COX was paralleled by an increase in ATP production. The effect was dose-dependent: it was negligible with 100 ??M BZF, and peaked at 400 ??M BZF. Higher BZF concentrations were associated with a relative decline of COX activity, indicating that the therapeutic range of this drug is very narrow. Combined treatment with 100 ??M CuCl2 and 200 ??M BZF (which are only marginally effective when administered individually) achieved complete rescue of COX activity in SCO2 cells.

Conclusions

These data are crucial to design therapeutic trials for this otherwise fatal disorder. The additive effect of copper and BZF will allow to employ lower doses of each drug and to reduce their potential toxic effects. The exact mechanism of action of BZF remains to be determined.  相似文献   

3.

Key message

We found that Arabidopsis AtADF1 was phosphorylated by AtCDPK6 at serine 6 predominantly and the phosphoregulation plays a key role in the regulation of ADF1-mediated depolymerization of actin filaments.

Abstract

Since actin-depolymerizing factor (ADF) is highly conserved among eukaryotes, it is one of the key modulators for actin organization. In plants, ADF is directly involved in the depolymerization of actin filaments, and therefore important for F-actin-dependent cellular activities. The activity of ADF is tightly controlled through a number of molecular mechanisms, including phosphorylation-mediated inactivation of ADF. To investigate Arabidopsis ADF1 phosphoregulation, we generated AtADF1 phosphorylation site-specific mutants. Using transient expression and stable transgenic approaches, we analyzed the ADF1 phosphorylation mutants in the regulation of actin filament organizations in plant cells. By in vitro phosphorylation assay, we showed that AtADF1 is phosphorylated by AtCDPK6 at serine 6 predominantly. Chemically induced expression of AtCDPK6 can negatively regulate the wild-type AtADF1 in depolymerizing actin filaments, but not those of the mutants AtADF1(S6A) and AtADF1(S6D). These results demonstrate a regulatory function of Arabidopsis CDPK6 in the N-terminal phosphorylation of AtADF1.  相似文献   

4.

Background

An integrative theoretical framework, developed for cross-disciplinary implementation and other behaviour change research, has been applied across a wide range of clinical situations. This study tests the validity of this framework.

Methods

Validity was investigated by behavioural experts sorting 112 unique theoretical constructs using closed and open sort tasks. The extent of replication was tested by Discriminant Content Validation and Fuzzy Cluster Analysis.

Results

There was good support for a refinement of the framework comprising 14 domains of theoretical constructs (average silhouette value 0.29): ??Knowledge??, ??Skills??, ??Social/Professional Role and Identity??, ??Beliefs about Capabilities??, ??Optimism??, ??Beliefs about Consequences??, ??Reinforcement??, ??Intentions??, ??Goals??, ??Memory, Attention and Decision Processes??, ??Environmental Context and Resources??, ??Social Influences??, ??Emotions??, and ??Behavioural Regulation??.

Conclusions

The refined Theoretical Domains Framework has a strengthened empirical base and provides a method for theoretically assessing implementation problems, as well as professional and other health-related behaviours as a basis for intervention development.  相似文献   

5.

Background

The activation of mononuclear phagocytes (MPs), including monocytes, macrophages and dendritic cells, contributes to central nervous system inflammation in various neurological diseases. In HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), MPs are reservoirs of HTLV-I, and induce proinflammatory cytokines and excess T cell responses. The virus-infected or activated MPs may play a role in immuneregulation and disease progression in patients with HTLV-I-associated neurological diseases.

Results

Phenotypic analysis of CD14+ monocytes in HAM/TSP patients demonstrated high expression of CX3CR1 and HLA-DR in CD14lowCD16+ monocytes, compared to healthy normal donors (NDs) and asymptomatic carriers (ACs), and the production of TNF-?? and IL-1?? in cultured CD14+ cells of HAM/TSP patients. CD14+ cells of HAM/TSP patients also showed acceleration of HTLV-I Tax expression in CD4+ T cells. Minocycline, an inhibitor of activated MPs, decreased TNF-?? expression in CD14+ cells and IL-1?? release in PBMCs of HAM/TSP patients. Minocycline significantly inhibited spontaneous lymphoproliferation and degranulation/IFN-?? expression in CD8+ T cells of HAM/TSP patients. Treatment of minocycline also inhibited IFN-?? expression in CD8+ T cells of HAM/TSP patients after Tax11-19 stimulation and downregulated MHC class I expression in CD14+ cells.

Conclusion

These results demonstrate that minocycline directly inhibits the activated MPs and that the downregulation of MP function can modulate CD8+ T cells function in HAM/TSP patients. It is suggested that activated MPs may be a therapeutic target for clinical intervention in HAM/TSP.  相似文献   

6.

Background

Low endogenous testosterone levels have been shown to be a risk factor for the development of cardiovascular disease and cardiovascular benefits associated with testosterone replacement therapy are being advocated; however, the effects of endogenous testosterone levels on acute coronary vasomotor responses to androgen administration are not clear. The objective of this study was to compare the effects of acute androgen administration on in vivo coronary conductance and in vitro coronary microvascular diameter in intact and castrated male swine.

Methods

Pigs received intracoronary infusions of physiologic levels (1?C100 nM) of testosterone, the metabolite 5??-dihydrotestosterone, and the epimer epitestosterone while left anterior descending coronary blood flow and mean arterial pressure were continuously monitored. Following sacrifice, coronary arterioles were isolated, cannulated, and exposed to physiologic concentrations (1?C100 nM) of testosterone, 5??-dihydrotestosterone, and epitestosterone. To evaluate effects of the androgen receptor on acute androgen dilation responses, real-time PCR and immunohistochemistry for androgen receptor were performed on conduit and resistance coronary vessels.

Results

In vivo, testosterone and 5??-dihydrotestosterone produced greater increases in coronary conductance in the intact compared to the castrated males. In vitro, percent maximal dilation of microvessels was similar between intact and castrated males for testosterone and 5??-dihydrotestosterone. In both studies epitestosterone produced significant increases in conductance and microvessel diameter from baseline in the intact males. Androgen receptor mRNA expression and immunohistochemical staining were similar in intact and castrated males.

Conclusions

Acute coronary vascular responses to exogenous androgen administration are increased by endogenous testosterone, an effect unrelated to changes in androgen receptor expression.  相似文献   

7.

Introduction

The goals of this study were to examine the oxemic regulation of Wnt signaling to explore whether Wnt signaling accelerates the age-related degeneration of nucleus pulposus cells, and if so, to define the mechanism underlying this effect. We investigated the expression of Klotho, a newly identified antiaging gene, and whether its regulation is attributable to the suppression of Wnt signaling.

Methods

Rat nucleus pulposus cells were cultured under normoxic (21% O2) or hypoxic (2% O2) conditions, and the expression and promoter activity of Wnt signaling and Klotho were evaluated. The effect of Klotho protein was examined with transfection experiments, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, senescence-associated ??-galactosidase staining, and cell-cycle analysis. To determine the methylation status of the Klotho promoter region, bisulfite genomic sequencing analysis was performed. Its relation with the activation of Wnt signaling was assessed. We also examined whether the expression of Klotho could block the effects of pathological Wnt expression in nucleus pulposus cells.

Results

Nucleus pulposus cells exhibited increased ??-catenin mRNA and protein under the hypoxic condition. Klotho protein was expressed in vivo, and protein and messenger RNA expression decreased under the hypoxic condition. Klotho treatment decreased cell proliferation and induced the quiescence of nucleus pulposus cells. In addition, Klotho treatment inhibited expression of ??-catenin gene and protein compared with untreated control cells.

Conclusions

These data indicate that Wnt signaling and Klotho form a negative-feedback loop in nucleus pulposus cells. These results suggest that the expression of Klotho is regulated by the balance between upregulation and downregulation of Wnt signaling.  相似文献   

8.
9.
10.
In addition to protecting epithelial cells from mechanical stress, keratins regulate cytoarchitecture, cell growth, proliferation, apoptosis, and organelle transport. In this issue, Vijayaraj et al. (2009. J. Cell Biol. doi:10.1083/jcb.200906094) expand our understanding of how keratin proteins participate in the regulation of protein synthesis through their analysis of mice lacking the entire type II keratin gene cluster.Keratins are members of the intermediate filament family. They form intricate cytoskeletal networks via the assembly and organization of 10–12-nm filaments, whose formation is initiated through coiled-coil interactions between a type I keratin (e.g., K18 and -19) and a type II keratin (e.g., K8; Kim and Coulombe, 2007). Most keratin proteins have been shown to contribute to the protection of cells and tissues from mechanical and nonmechanical stresses (Toivola et al., 2005; Kim and Coulombe, 2007). Whereas the large number of keratin genes (n = 54; Schweizer et al., 2006) and the heteropolymerization-based assembly of their protein products should in part serve the purpose of modulating the viscoelastic properties of keratin networks to assist various cellular needs, common sense dictates that there should be additional roles for these proteins. Not surprisingly, efforts over the last decade have implicated keratin proteins in several nontraditional functions, including cytoarchitecture, proliferation and growth, apoptosis, and organelle transport, to name a few (Toivola et al., 2005; Kim and Coulombe, 2007). Yet, the high homology between several keratin proteins along with their overlapping distribution in epithelia has limited researchers'' progress toward uncovering the full range of keratin function in vivo (Baribault et al., 1994; Tamai et al., 2000; McGowan et al., 2002; Kerns et al., 2007). In this issue, Vijayaraj et al. report on the ultimate bypass of redundancy by eliminating all keratin filaments via the generation of a mouse strain lacking all type II keratins (KtyII−/− mice). The study of these mice, which are viable until embryonic day 9.5, led to the discovery of a novel mechanism through which keratin proteins regulate protein synthesis and cell growth (Kim et al., 2006, 2007; Galarneau et al., 2007). The authors'' findings also showcase the recent conceptual and technical advances of chromosome engineering in the mouse genome.For over a decade, the Cre-loxP site-specific recombination system has been a popular method to generate targeted conditional knockout embryonic stem (ES) cells and mice. Although recombination efficiency is inversely proportional to the distance between loxP sites, larger chromosomal rearrangements have been successfully engineered into mouse ES cells using Cre-loxP (Ramírez-Solis et al., 1995). Generating such targeting vectors is cumbersome using traditional cloning methods. This said, DNA recombineering eliminates many of the constraints of finding unique restriction enzyme sites in genomic DNA sequences (Liu et al., 2003). Also, an Sv129 bacterial artificial chromosome (BAC) library generated from AB2.2 ES cells makes it easier to obtain large genomic sequences or even target ES cells directly with loxP-containing BACs (Liu et al., 2003; Adams et al., 2005). Finally, the Mutagenic Insertion and Chromosome Engineering Resource (MICER), a library of ready-made targeting vectors spread throughout the mouse genome, is now available (Adams et al., 2004). Vijayaraj et al. (2009) used MICER vectors to remove the entire 0.68-Mb keratin type II cluster on mouse chromosome 15 (Fig. 1 A). Owing to the interdependency of type I and II keratins for 10-nm filament assembly (Fig. 1 B), the resulting KtyII−/− mice represent the first successful elimination of all keratin filaments from an organism as complex as a mouse.Open in a separate windowFigure 1.Genome organization, assembly, and epithelial function of keratins. (A) Arrangement of keratin clusters in the mouse genome. Human keratin genes that have not been identified or annotated in the mouse genome are shown on the bottom side and marked with a question mark. The arrows mark the boundaries of the region deleted by Vijayaraj et al. (2009) on mouse chromosome 15. (B) Summary of the multistep pathway through which type I and II keratin protein monomers polymerize to form 10-nm filaments. The antiparallel docking of the lollipop-shaped coiled-coiled dimers along their lateral surfaces generates structurally apolar tetramers and accounts for the lack of polarity of assembled keratin intermediate filaments. For all steps in the pathway, the forward (assembly promoting) reaction is heavily favored in vitro (Kim and Coulombe, 2007). (C) Keratins influence the localization and function of many cellular components. As highlighted here, keratins interact with and modulate the mTOR pathway in several ways, both in skin keratinocytes and gut epithelial cells, and regulate the localization of microtubules, γ-tubulin, and GLUT transporters in polarized epithelia. Components are not drawn to scale in this schematic.KtyII−/− embryos display severe growth retardation and die midgestation (Baribault et al., 1993; Hesse et al., 2000; Tamai et al., 2000). Smaller cell size has been observed previously in K17−/− skin keratinocytes and K8−/− liver hepatocytes, correlating with altered Akt/mammalian target of rapamycin (mTOR) signaling (Fig. 1 C) and a reduction in bulk protein synthesis (Kim et al., 2006; Galarneau et al., 2007). Although K17 appears to modulate the mTOR pathway through its physical interaction with 14-3-3–σ in keratinocytes (Fig. 1 C; Kim et al., 2006), the mechanism for how K8 influences protein synthesis in hepatocytes is less clear but appears to integrate responses to both insulin and integrin stimulation (Galarneau et al., 2007). Loss of K8 is also associated with an increase in Akt activity (Galarneau et al., 2007), which is contrary to the findings in the K17−/− setting (Kim et al., 2006), calling into question whether the two settings use the same mechanism to modulate mTOR signaling. Vijayaraj et al. (2009) uncover yet another path through which keratins are able to influence protein synthesis. The authors find that loss of all keratin filaments causes mislocalization of GLUT transporters and disruption of glucose homeostasis through AMP kinase (AMPK) activation. In addition, the authors report that in the absence of the keratin network, AMPK phosphorylates Raptor, which then interacts with mTOR to repress protein synthesis and hamper cell growth (Fig. 1 C). These findings further the evidence for an important role of keratin proteins (or filaments) in the regulation of translation and epithelial cell growth. However, they also raise the question of whether keratins affect mTOR signaling via an as of yet unknown, common denominator or whether several mechanisms come together, perhaps in a cell type– and context-dependent fashion, to achieve the same downstream effect.Unlike actin and microtubules, keratin filaments are not believed to possess intrinsic polarity (Fig. 1 B). However, K8/K18 and/or K8/K19 filaments play a significant role in maintaining apicobasal compartmentalization in simple epithelial linings in both the small intestine (Ameen et al., 2001; Oriolo et al., 2007) and colon of adult mice (Toivola et al., 2004) and have also been implicated in organelle transport (Toivola et al., 2005; Kim and Coulombe, 2007). The mechanism or mechanisms accounting for this surprising influence of keratins on the establishment and maintenance of spatial order in epithelial cells are unknown. Ameen et al. (2001) and Oriolo et al. (2007) recently made a dent in this mystery by showing that K8/K18 filaments are necessary for the proper localization of γ-tubulin to the apical compartment in polarized epithelial cells, thereby participating in the organization of noncentrosomic microtubules (note: the interested reader should examine a recent study by Bocquet et al. [2009], which shows a role for neuronal intermediate filaments in tubulin polymerization in axons). Similar to previous observations made in K8−/− mice (Ameen et al., 2001; Toivola et al., 2004), Vijayaraj et al. (2009) show that apical proteins, particularly GLUT1 and -3, are mislocalized in KtyII−/− embryonic epithelia. However, in this instance, microtubule organization appears to be intact. Although the authors'' experimental findings again nicely demonstrate a role for keratin proteins in the establishment of polarity in simple epithelial settings, the underlying mechanism or mechanisms still need to be ascertained.The mouse model generated by Vijayaraj et al. (2009) has important implications for the field of keratin biology and intermediate filaments in general. It will allow researchers to address central questions about the contributions of keratins during development and tissue homeostasis unencumbered by the redundancy of properties and functions among members of this large family. The availability of tissue- or cell type–specific promoters makes it possible to express the Cre recombinase in specific epithelial settings, thereby promoting the elimination of keratins in a more restricted fashion. It will be interesting to see how the total loss of keratin filaments affects different tissues and subpopulations of cells, highlighting essential functions and perhaps uncovering previously unappreciated roles for keratins in complex cellular processes.  相似文献   

11.

Background

PKA, a key regulator of cell signaling, phosphorylates a diverse and important array of target molecules and is spatially docked to members of the A-kinase Anchoring Protein (AKAP) family. AKAR2 is a biosensor which yields a FRET signal in vivo, when phosphorylated by PKA. AKAP5, a prominent member of the AKAP family, docks several signaling molecules including PKA, PDE4D, as well as GPCRs, and is obligate for the propagation of the activation of the mitogen-activated protein kinase cascade from GPCRs to ERK1,2.

Results

Using an AKAR2-AKAP5 fusion ??biosensor??, we investigated the spatial-temporal activation of AKAP5 undergoing phosphorylation by PKA in response to ??-adrenergic stimulation. The pattern of PKA activation reported by AKAR2-AKAP5 is a more rapid and spatially distinct from those ??sensed?? by AKAR2-AKAP12. Spatial-temporal restriction of activated PKA by AKAP5 was found to ??shape?? the signaling response. Phosphatase PDE4D tethered to AKAP5 also later reverses within 60?s elevated intracellular cyclic AMP levels stimulated by ??-adrenergic agonist. AKAP12, however, fails to attenuate the rise in cyclic AMP over this time. Fusion of the AKAP5 PDE4D-binding-domain to AKAP12 was found to accelerate a reversal of accumulation of intracellular cyclic AMP.

Conclusion

AKAPs, which are scaffolds with tethered enzymes, can ??shape?? the temporal and spatial aspects of cell signaling.  相似文献   

12.
13.
14.

Introduction

Villin 1 is an actin-regulatory protein involved in the formation of microvilli of mammalian enterocytes. The microvilli, finger-like protrusions, are more abundant on the apical surfaces of gill ionocytes in various freshwater (FW) teleosts than in seawater (SW) fishes. However, the plasticity in the mechanisms of microvillus formation in the gill ionocytes are poorly understood, and the actin-regulatory proteins involved in the formation of microvilli have not been identified in fishes. The present study used the euryhaline medaka (Oryzias dancena) as a model to explore the role of a homolog of villin 1 in the actin-organization of cellular morphologies induced by decreasing salinities.

Results

By ultrastructural observation, there are numerous actin filaments organized on the apical cortex of ion-absorptive ionocytes in the FW-acclimated medaka. From gills of the euryhaline medaka, we have identified the VILL sequence. The phylogenetic tree and functional domains suggest that VILL is the homolog of villin 1 in fishes. Immunofluorescence using a specific antibody revealed that VILL was specifically localized to the apical region of gill ionocytes along with microvilli in the FW medaka, but not in SW fish. The expression levels of Odvill mRNA and VILL protein were higher in the gills of the FW individuals than in the SW group and were induced when fish were transferred from SW to FW. A morpholino oligonucleotide for VILL knockdown eliminated the apical protrusions of ionocytes and pavement cells in the trunk epithelia of embryos.

Conclusions

From a novel aspect of cytoskeletal functions, our findings highlighted the important role of VILL protein in the ionoregulation of aquatic vertebrates in response to different osmotic challenges. This study is the first to show that the expression of VILL is associated with the formation of microvilli in the absorptive ionocytes of a euryhaline fish. Loss-of-function experiments showed that the distribution of VILL may represent the molecular link between the cytoskeletal organization and cellular morphology of the absorptive ionocytes during hypoosmotic adaptation in aquatic vertebrates.  相似文献   

15.

Background

Enteropathogenic Escherichia coli (EPEC) produce attaching/effacing (A/E) lesions on eukaryotic cells mediated by the outer membrane adhesin intimin. EPEC are sub-grouped into typical (tEPEC) and atypical (aEPEC). We have recently demonstrated that aEPEC strain 1551-2 (serotype O non-typable, non-motile) invades HeLa cells by a process dependent on the expression of intimin sub-type omicron. In this study, we evaluated whether aEPEC strains expressing other intimin sub-types are also invasive using the quantitative gentamicin protection assay. We also evaluated whether aEPEC invade differentiated intestinal T84 cells.

Results

Five of six strains invaded HeLa and T84 cells in a range of 13.3%–20.9% and 5.8%–17.8%, respectively, of the total cell-associated bacteria. The strains studied were significantly more invasive than prototype tEPEC strain E2348/69 (1.4% and 0.5% in HeLa and T84 cells, respectively). Invasiveness was confirmed by transmission electron microscopy. We also showed that invasion of HeLa cells by aEPEC 1551-2 depended on actin filaments, but not on microtubules. In addition, disruption of tight junctions enhanced its invasion efficiency in T84 cells, suggesting preferential invasion via a non-differentiated surface.

Conclusion

Some aEPEC strains may invade intestinal cells in vitro with varying efficiencies and independently of the intimin sub-type.  相似文献   

16.

Objectives

To analyze the anti-insect mechanism of viral pesticide AcMNPV-BmK IT(P10/PH) in the host Spodoptera frugiperda 9 (Sf9) cells.

Results

Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)- mediated expression of BmK IT, regulated by P10 protein promoter (P10) and polyhedrosis promoter (PH), promoted the replication of progeny virus in host Sf9 cells. AcMNPV-BmK IT(P10) could accelerate the budding process (or speed) of budded virus (BV) in Sf9 cells. The impact of AcMNPV-BmK IT(P10) on the nuclear polymerization of filamentous actin (F-actin) participated in regulating the accelerated budding process. Unexpectedly, both AcMNPV-BmK IT(P10) and AcMNPV-BmK IT(PH) delayed the nuclear polymerization of F-actin and promoted the clearance of F-actin in the nucleus. SfP53, an important apoptosis factor, was involved in the regulation of AcMNPV-BmK IT(P10/PH) in Sf9 cells. AcMNPV-BmK IT(P10/PH) could also delay and promote the nuclear recruitment of SfP53 after 27 h post infection (h p.i.).

Conclusion

SfP53 and F-actin are the targets of viral pesticide AcMNPV-BmK IT (P10/PH) in host Sf9 cells, which provides the experimental basis for the development of recombinant baculovirus biopesticides.
  相似文献   

17.

Objectives

To optimize the production of active inclusion bodies (IBs) containing human d-amino acid oxidase (hDAAO) in Escherichia coli.

Results

The optimized initial codon region combined with the coexpressed rare tRNAs, fusion of each of the N-terminal partners including cellulose-binding module, thioredoxin, glutathione S-transferase and expressivity tag, deletion of the incorporated linker, and improvement of tRNA abundance affected the production and activity for oxidizing d-alanine of the hDAAO in IBs. Compared with the optimized fusion constructs and expression host, IBs yields and activity were increased to 2.6- and 2.8-fold respectively by changing the N-terminal codon bias of the hDAAO. The insoluble hDAAO codon variant displayed the same substrate specificity as the soluble one for oxidizing d-alanine, d-serine and d-aspartic acid. The freshly prepared hDAAO codon variant was used for analyzing the l-serine racemization activity of the bacterially expressed maize serine racemase.

Conclusions

Optimization of the N-terminal codon bias combined with the coexpression of rare tRNAs is a novel and efficient approach to produce active IBs of the hDAAO.
  相似文献   

18.

Key message

This study indicated that Ca 2+ , ROS and actin filaments were involved with CaM in regulating pollen tube growth and providing a potential way for overcoming pear self-incompatibility.

Abstract

Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca2+) current, and anti-CaM largely inhibited this type of Ca2+ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca2+ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca2+, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.  相似文献   

19.

Introduction

Increased frequencies of hyperuricemia and gout have been associated with primary hyperparathyroidism, and recent clinical trials of parathyroid hormone (PTH) have reported hyperuricemic adverse events. We evaluated the potential population impact of PTH on serum uric acid (SUA) levels by using a nationally representative sample of United States adults.

Methods

By using data from 8,316 participants aged 18 years and older in the National Health and Nutrition Examination Survey 2003 to 2006, we examined the relation between serum PTH and SUA levels with weighted linear regression. Additionally, we examined the relation with hyperuricemia by using weighted logistic regression.

Results

SUA levels increased with increasing serum PTH concentration. After adjusting for age, sex, dietary factors, glomerular filtration rate (GFR), and other potentially related biomarkers (calcium, phosphorus, alkaline-phosphatase, 25-hydroxyvitamin D), the SUA level differences from the bottom (referent) to top quintiles of serum PTH levels were 0, 8, 13, 14, and 19 ??M (95% CI, 12 to 26; P for trend, < 0.001). These estimates were larger among renally impaired individuals (multivariate SUA difference between the extreme quintiles of PTH, 26 versus 15 ??M among those with GFR ?? 60 versus < 60 ml/min per 1.73 m2, respectively) (P for interaction = 0.004). The odds of hyperuricemia by various definitions increased with increasing PTH levels as well (multivariate P values for trend, < 0.05).

Conclusions

These nationally representative data indicate that serum PTH levels are independently associated with serum uric acid levels and the frequency of hyperuricemia at the population level.  相似文献   

20.

Background

Bone marrow stromal cell antigen 2 (BST-2) is a cellular factor that restricts the egress of viruses such as human immunodeficiency virus (HIV-1) from the surface of infected cells, preventing infection of new cells. BST-2 is variably expressed in most cell types, and its expression is enhanced by cytokines such as type I interferon alpha (IFN-??). In this present study, we used the beta-retrovirus, mouse mammary tumor virus (MMTV) as a model to examine the role of mouse BST-2 in host infection in vivo.

Results

By using RNA interference, we show that loss of BST-2 enhances MMTV replication in cultured mammary tumor cells and in vivo. In cultured cells, BST-2 inhibits virus accumulation in the culture medium, and co-localizes at the cell surface with virus structural proteins. Furthermore, both scanning electron micrograph (SEM) and transmission electron micrograph (TEM) show that MMTV accumulates on the surface of IFN??-stimulated cells.

Conclusions

Our data provide evidence that BST-2 restricts MMTV release from naturally infected cells and that BST-2 is an antiviral factor in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号