首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular receptors for the Fc domain of immunoglobulin G (IgG) (FcgammaRs) comprise a family of surface receptors on immune cells connecting humoral and cellular immune responses. Several herpesviruses induce FcgammaR activities in infected cells. Here we identify two distinct human cytomegalovirus (HCMV)-encoded vFcgammaR glycoproteins of 34 and 68 kDa. A panel of HCMV strains exhibited a slight molecular microheterogeneity between Fcgamma-binding proteins, suggesting their viral origin. To locate the responsible genes within the HCMV genome, a large set of targeted HCMV deletion mutants was constructed. The mutant analysis allowed the identification of a spliced UL119-UL118 mRNA to encode vFcgammaR gp68 and TRL11/IRL11 to encode vFcgammaR gp34. Both vFcgammaRs are surface resident type I transmembrane glycoproteins. Significant relatedness of sequences in the extracellular chain of gpUL119-118 and gpTRL11 with particular immunoglobulin supergene family domains present in FcgammaR I and FcgammaRs II/III, respectively, indicates a different ancestry and function of gpUL119-118 and gpTRL11. The HCMV-encoded vFcgammaRs highlight an impressive diversification and redundancy of FcgammaR structures.  相似文献   

2.
The Herpes Simplex Virus 1 (HSV-1) glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG). gE-gI can also participate in antibody bipolar bridging (ABB), a process by which the antigen-binding fragments (Fabs) of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI–bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI–dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.  相似文献   

3.
Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-Å CgE structure. A 5-Å gE-gI/Fc crystal structure, which was independently verified by a theoretical prediction method, reveals that CgE binds Fc at the C H2-C H3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response.  相似文献   

4.
Herpes simplex virus type I (HSV-1) virions and HSV-1-infected cells bind to human immunoglobulin G (hIgG) via its Fc region. A complex of two surface glycoproteins encoded by HSV-1, gE and gI, is responsible for Fc binding. We have co-expressed soluble truncated forms of gE and gI in Chinese hamster ovary cells. Soluble gE-gI complexes can be purified from transfected cell supernatants using a purification scheme that is based upon the Fc receptor function of gE-gI. Using gel filtration and analytical ultracentrifugation, we determined that soluble gE-gI is a heterodimer composed of one molecule of gE and one molecule of gI and that gE-gI heterodimers bind hIgG with a 1:1 stoichiometry. Biosensor-based studies of the binding of wild type or mutant IgG proteins to soluble gE-gI indicate that histidine 435 at the CH2-CH3 domain interface of IgG is a critical residue for IgG binding to gE-gI. We observe many similarities between the characteristics of IgG binding by gE-gI and by rheumatoid factors and bacterial Fc receptors such as Staphylococcus aureus protein A. These observations support a model for the origin of some rheumatoid factors, in which they represent anti-idiotypic antibodies directed against antibodies to bacterial and viral Fc receptors.  相似文献   

5.
Fcgamma receptors (FcgammaRs) are expressed on all immunologically active cells. They bind the Fc portion of IgG, thereby triggering a range of immunological functions. We have used surface plasmon resonance to analyze the kinetic and thermodynamic properties of the interactions between the ectodomains of human low affinity FcgammaRs (FcgammaRIIa, FcgammaRIIb, and FcgammaRIIIb-NA2) and IgG1 or the Fc fragment of IgG1. All three receptors bind Fc or IgG with similarly low affinities (K(D) approximately 0.6-2.5 microm) and fast kinetics, suggesting that FcgammaR-mediated recognition of aggregated IgG and IgG-coated particles or cells is mechanistically similar to cell-cell recognition. Interestingly, the Fc receptors exhibit distinct thermodynamic properties. Whereas the binding of the FcgammaRIIa and FcgammaRIIb to Fc is driven by favorable entropic and enthalpic changes, the binding of FcgammaRIII is characterized by highly unfavorable entropic changes. Although the structural bases for these differences remain to be determined, they suggest that the molecular events coupled to the binding differ among the low affinity FcgammaRs.  相似文献   

6.
Herpes simplex virus type 1 encodes two glycoproteins, gE and gI, that form a heterodimer on the surface of virions and infected cells. The gE-gI heterodimer has been implicated in cell-to-cell spread of virus and is a receptor for the Fc fragment of IgG. Previous studies localized the gE-gI-binding site on human IgG to a region near the interface between the C(H)2 and C(H)3 domains of Fc, which also serves as the binding site for bacterial and mammalian Fc receptors. Although there are two potential gE-gI-binding sites per Fc homodimer, only one gE-gI heterodimer binds per IgG in gel filtration experiments. Here we report production of recombinant human Fc molecules that contain zero, one, or two potential gE-gI-binding sites and use them in analytical ultracentrifugation experiments to show that two gE-gI heterodimers can bind to each Fc. Further characterization of the gE-gI interaction with Fc reveals a sharp pH dependence of binding, with K(D) values of approximately 340 and approximately 930 nm for the first and second binding events, respectively, at the slightly basic pH of the cell surface (pH 7.4), but undetectable binding at pH 6.0. This strongly pH-dependent interaction suggests a physiological role for gE-gI dissociation from IgG within acidic intracellular compartments, consistent with a mechanism whereby herpes simplex virus promotes intracellular degradation of anti-viral antibodies.  相似文献   

7.
The human cytomegalovirus glycoprotein gp68 functions as an Fc receptor for host IgGs and can form antibody bipolar bridging (ABB) complexes in which gp68 binds the Fc region of an antigen-bound IgG. Here we show that gp68-mediated endocytosis transports ABB complexes into endosomes, after which the complex is routed to lysosomes, presumably for degradation. These results suggest gp68 contributes to evasion of IgG-mediated immune responses by mediating destruction of host IgG and viral antigens.  相似文献   

8.
The human cytomegalovirus (HCMV) protein RL13 has recently been described to be present in all primary isolates but rapidly mutated in culture adapted viruses. Although these data suggest a crucial role for this gene product in HCMV primary infection, no function has so far been assigned to this protein. Working with RL13 expressed in isolation in transfected human epithelial cells, we demonstrated that recombinant RL13 from the clinical HCMV isolates TR and Merlin have selective human immunoglobulin (Ig)-binding properties towards IgG1 and IgG2 subtypes. An additional Fc binding protein, RL12, was also identified as an IgG1 and IgG2 binding protein but not further characterized. The glycoprotein RL13 trafficked to the plasma membrane where it bound and internalized exogenous IgG or its constant fragment (Fcγ). Analysis of RL13 ectodomain mutants suggested that the RL13 Ig-like domain is responsible for the Fc binding activity. Ligand-dependent internalization relied on a YxxL endocytic motif located in the C-terminal tail of RL13. Additionally, we showed that the tyrosine residue could be replaced by phenylalanine but not by alanine, indicating that the internalization signal was independent from phosphorylation events. In sum, RL13 binds human IgG and may contribute to HCMV immune evasion in the infected host, but this function does not readily explain the instability of the RL13 gene during viral propagation in cultured cells.  相似文献   

9.
G Dubin  E Socolof  I Frank    H M Friedman 《Journal of virology》1991,65(12):7046-7050
Recent studies indicate that the herpes simplex virus type 1 (HSV-1) Fc receptor (FcR) can bind antiviral immunoglobulin G by participating in antibody bipolar bridging. This occurs when the Fab domain of an immunoglobulin G molecule binds to its antigenic target and the Fc domain binds to the HSV-1 FcR. In experiments comparing cells infected with wild-type HSV-1 (NS) and cells infected with an FcR-deficient mutant (ENS), we demonstrate that participation of the HSV-1 FcR in antibody bipolar bridging reduces the effectiveness of antibody-dependent cellular cytotoxicity.  相似文献   

10.
Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70 (D. C. Johnson and V. Feenstra, J. Virol. 61:2208-2216, 1987). Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, we have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI (R. Longnecker, S. Chatterjee, R. J. Whitley, and B. Roizman, Proc. Natl. Acad. Sci. USA 84:147-151, 1987). Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG.  相似文献   

11.
W L Martin  P J Bjorkman 《Biochemistry》1999,38(39):12639-12647
The neonatal Fc receptor (FcRn) facilitates the transfer of maternal immunoglobulin G (IgG) to offspring and prolongs the half-life of serum IgG. FcRn binds IgG in acidic intracellular vesicles and releases IgG upon exposure to the basic pH of the bloodstream. The crystal structure of an FcRn/Fc complex revealed FcRn dimers bridged by homodimeric Fc molecules to create an oligomeric array with two receptors per Fc [Burmeister et al. (1994) Nature 372, 379-383], consistent with the 2:1 FcRn:Fc stoichiometry observed in solution [Huber et al. (1993) J. Mol. Biol. 230, 1077-1083; Sánchez et al. (1999) Biochemistry 38, 9471-9476]. Two distinct 2:1 FcRn/Fc complexes were present in the cocrystal structure: a complex containing an FcRn dimer interacting with an Fc and a complex in which single FcRn molecules are bound to both sides of the Fc homodimer. To determine which of the two possible 2:1 FcRn/Fc complexes exists in solution, we generated recombinant Fc molecules with zero, one, and two FcRn binding sites and studied their interactions with a soluble form of rat FcRn. The wild-type Fc with two FcRn binding sites binds two FcRn molecules under all assay conditions, and the nonbinding Fc with no FcRn binding sites shows no specific binding. The heterodimeric Fc with one FcRn binding site binds one FcRn molecule, suggesting that the 2:1 FcRn/wild-type Fc complex formed in solution consists of single FcRn molecules binding to both sides of Fc rather than an FcRn dimer binding to a single site on Fc.  相似文献   

12.
Human cytomegalovirus (HCMV) establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG). Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs). Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs) interfere with individual host FcγRs. In absence of gp34 or/and gp68, HCMV elicited a much stronger activation of FcγRIIIA/CD16, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRIII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIIA, FcγRIIA and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab) and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.  相似文献   

13.
The IgG binding Fcgamma receptors (FcgammaRs) play a key role in defence against pathogens by linking humoral and cell-mediated immune responses. Impaired expression and/or function of FcgammaR may result in the development of pathological autoimmunity. Considering the functions of FcgammaRs, they are potential target molecules for drug design to aim at developing novel anti-inflammatory and immunomodulatory therapies. Previous data mostly obtained by X-ray analysis of ligand-receptor complexes indicate the profound role of the CH2 domain in binding to various FcgammaRs. Our aim was to localize linear segments, which are able to bind and also to modulate the function of the low affinity FcgammaRs, like FcgammaRIIb and FcgammaRIIIa. To this end a set of overlapping octapeptides was prepared corresponding to the 231-298 sequence of IgG1 CH2 domain and tested for binding to human recombinant soluble FcgammaRIIb. Based on these results, a second group of peptides was synthesized and their binding properties to recombinant soluble FcgammaRIIb, as well as to FcgammaRs expressed on the cell surface, was investigated. Here we report that peptide representing the Arg(255)-Ser(267) sequence of IgG1 is implicated in the binding to FcgammaRIIb. In addition we found that peptides corresponding to the Arg(255)-Ser(267), Lys(288)-Ser(298) or Pro(230)-Val(240) when presented in a multimeric form conjugated to branched chain polypeptide in uniformly oriented copies induced the release of TNFalpha, a pro-inflammatory cytokine from MonoMac monocyte cell line. These findings indicate that these conjugated peptides are able to cluster the activating FcgammaRs, and mediate FcgammaR dependent function. Peptide Arg(255)-Ser(267) can also be considered as a lead for further functional studies.  相似文献   

14.
Herpes simplex virus type 1 (HSV-1) glycoprotein gE functions as an immunoglobulin G (IgG) Fc receptor (FcgammaR) that promotes immune evasion. When an IgG antibody binds by the F(ab')(2) domain to an HSV antigen, the Fc domain of some of the same antibody molecules binds to the FcgammaR, which blocks Fc-mediated functions. gE is a type 1 membrane glycoprotein with a large ectodomain that is expressed on the virion envelope and infected-cell surface. Our goal was to determine if immunizing with gE protein fragments could produce antibodies that bind by the F(ab')(2) domain to gE and block the FcgammaR, as measured by competitively inhibiting nonimmune human IgG binding to the FcgammaR. Three gE peptides were constructed in baculovirus spanning almost the entire ectodomain and used to immunize mice and rabbits. Two fragments were highly effective at producing antibodies that bind by the F(ab')(2) domain and block the FcgammaR. The most potent of these two antibodies was far more effective at blocking the FcgammaR than antibodies that are only capable of binding by the Fc domains to the FcgammaR, including anti-gC, anti-gD, and nonimmune IgG. These results suggest that immunizing with gE fragments has potential for preventing immune evasion by blocking activities mediated by the HSV-1 FcgammaR.  相似文献   

15.
Herpes simplex virus (HSV) glycoproteins E and I (gE and gI) can act as a receptor for the Fc domain of immunoglobulin G (IgG). To examine the role of HSV IgG Fc receptor in viral pathogenesis, rabbits and mice were infected by the corneal route with HSV gE- or gI- mutants. Wild-type HSV-1 produced large dendritic lesions in the corneal epithelium and subsequent stromal disease leading to viral encephalitis, whereas gE- and gI- mutant viruses produced microscopic punctate or small dendritic lesions in the epithelium and no corneal disease or encephalitis. These differences were not related to the ability of the gE-gI oligomer to bind IgG because the differences were observed before the appearance of anti-HSV IgG and in mice, in which IgG binds to the Fc receptor poorly or not at all. Mutant viruses produced small plaques on monolayers of normal human fibroblasts and epithelial cells. Replication of gE- and gI- mutant viruses in human fibroblasts were normal, and the rates of entry of mutant and wild-type viruses into fibroblasts were similar; however, spread of gE- and gI- mutant viruses from cell to cell was significantly slower than that of wild-type HSV-1. In experiments in which fibroblast monolayers were infected with low multiplicities of virus and multiple rounds of infection occurred, the presence of neutralizing antibodies in the culture medium caused the yields of mutant viruses to drop dramatically, whereas there was a lesser effect on the production of wild-type HSV. It appears that cell-to-cell transmission of wild-type HSV-1 occurs by at least two mechanisms: (i) release of virus from cells and entry of extracellular virus into a neighboring cell and (ii) transfer of virus across cell junctions in a manner resistant to neutralizing antibodies. Our results suggest that gE- and gI- mutants are defective in the latter mechanism of spread, suggesting the possibility that the gE-gI complex facilitates virus transfer across cell junctions, a mode of spread which may predominate in some tissues. It is ironic that the gE-gI complex, usually considered an IgG Fc receptor, may, through its ability to mediate cell-to-cell spread, actually protect HSV from IgG in a manner different than previously thought.  相似文献   

16.
Fcgamma receptors mediate antibody-dependent inflammatory responses and cytotoxicity as well as certain autoimmune dysfunctions. Here we report the crystal structure of a human Fc receptor (FcgammaRIIIB) in complex with an Fc fragment of human IgG1 determined from orthorhombic and hexagonal crystal forms at 3.0- and 3.5-A resolution, respectively. The refined structures from the two crystal forms are nearly identical with no significant discrepancies between the coordinates. Regions of the C-terminal domain of FcgammaRIII, including the BC, C'E, FG loops, and the C' beta-strand, bind asymmetrically to the lower hinge region, residues Leu(234)-Pro(238), of both Fc chains creating a 1:1 receptor-ligand stoichiometry. Minor conformational changes are observed in both the receptor and Fc upon complex formation. Hydrophobic residues, hydrogen bonds, and salt bridges are distributed throughout the receptor.Fc interface. Sequence comparisons of the receptor-ligand interface residues suggest a conserved binding mode common to all members of immunoglobulin-like Fc receptors. Structural comparison between FcgammaRIII.Fc and FcepsilonRI.Fc complexes highlights the differences in ligand recognition between the high and low affinity receptors. Although not in direct contact with the receptor, the carbohydrate attached to the conserved glycosylation residue Asn(297) on Fc may stabilize the conformation of the receptor-binding epitope on Fc. An antibody-FcgammaRIII model suggests two possible ligand-induced receptor aggregations.  相似文献   

17.
The neonatal Fc receptor (FcRn) transports immunoglobulin G (IgG) across epithelia, providing passive immunity and protecting serum IgG from degradation. For both functions, FcRn binds to IgG at the acidic pH of intracellular vesicles (pH 相似文献   

18.
How antibodies work: focus on Fc receptors   总被引:2,自引:0,他引:2  
It is increasingly appreciated that the part of an antibody not involved in the binding of antigen--the Fc region--plays an important biological role. It activates a variety of receptors not only on so-called effector cells such as macrophages and granulocytes, but also on lymphocytes, and it can thereby modulate the immune response itself. Over the past 2 years much new information has been gained about the structure of such receptors, in large part through molecular genetics. In this review we describe the structure and some aspects of the function of the most complicated of the cellular Fc receptors so far identified: the receptor with high affinity for immunoglobulin E (IgE) on mast cells. The structure of its IgE-binding chain is strikingly similar to the corresponding polypeptide of an immunoglobulin G receptor. Like the latter and like a receptor that binds polymeric immunoglobulin, segments of the protein resemble immunoglobulin sequences. It is surprising that other IgE-binding proteins that putatively serve related functions have completely different structures.  相似文献   

19.
Glycoprotein E (gE) of herpes simplex virus type 1 (HSV-1) will bind immunoglobulin G (IgG) (Fc) affinity columns (R. B. Bauke and P. G. Spear, J. Virol. 32:779-789, 1979), but recent evidence suggests that the HSV-1 Fc receptor is composed of a complex of gE and glycoprotein I (gI) and that both gI and gE are required for Fc receptor activity (D. C. Johnson and V. Feenstra, J. Virol. 61:2208-2216, 1987; D. C. Johnson, M. C. Frame, M. W. Ligas, A. M. Cross, and N. D. Stow, J. Virol. 62:1347-1354, 1988). We have expressed gE and gI, either alone or in combination, on the surface of HeLa cells by using recombinant vaccinia viruses and have measured Fc receptor activity by Fc-rosetting or IgG-binding assays. Expression of gE alone resulted in the induction of Fc receptor activity, while expression of gI alone gave no detectable Fc binding. Coexpression of gE and gI resulted in higher levels of IgG binding than did expression of gE alone, despite the fact that under conditions of coexpression, the levels of surface gE were reduced. We propose that gE and gI together form a receptor of higher affinity than gE alone and that HSV-1 therefore has the potential to induce two Fc receptors of different affinities.  相似文献   

20.
Removal of the fucose residue from the oligosaccharides attached to Asn297 of human immunoglobulin G1 (IgG1) results in a significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) via improved IgG1 binding to Fcgamma receptor IIIa. To provide structural insight into the mechanisms of affinity enhancement, we determined the crystal structure of the nonfucosylated Fc fragment and compared it with that of fucosylated Fc. The overall conformations of the fucosylated and nonfucosylated Fc fragments were similar except for hydration mode around Tyr296. Stable-isotope-assisted NMR analyses confirmed the similarity of the overall structures between fucosylated and nonfucosylated Fc fragments in solution. These data suggest that the glycoform-dependent ADCC enhancement is attributed to a subtle conformational alteration in a limited region of IgG1-Fc. Furthermore, the electron density maps revealed that the traces between Asp280 and Asn297 of our fucosylated and nonfucosylated Fc crystals were both different from that in previously reported isomorphous Fc crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号