首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The biochemical mechanism of phytochrome action is unknown. We have examined the proposal, based on sequence similarities to the sensor histidine kinase components of bacterial two-component signaling systems, that the phytochromes may be functional homologs of these kinases. Four amino acids, three highly conserved between the phytochrome and bacterial kinase molecules and the other, the histidine residue putatively the target of autophosphorylation, were changed singly in the oat phytochrome A sequence by in vitro site-directed mutagenesis, and the resultant mutant photo-receptor molecules were assayed for activity by overexpression in transgenic Arabidopsis. Three of the four mutant molecules retained activity equivalent to that of the unmutagenized parent sequence, whereas the fourth mutant could not be evaluated because of low expression. The data show that the former three mutagenized residues are not essential for phytochrome A function in transgenic Arabidopsis, but, because of the negative nature of the results, the possibility cannot be precluded that the photoreceptor functions as a protein kinase independent of these residues.Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

2.
3.
4.
5.
Protein–protein interactions (PPIs) drive all biologic systems at the subcellular and extracellular level. Changes in the specificity and affinity of these interactions can lead to cellular malfunctions and disease. Consequently, the binding interfaces between interacting protein partners are important drug targets for the next generation of therapies that block such interactions. Unfortunately, protein–protein contact points have proven to be very difficult pharmacological targets because they are hidden within complex 3D interfaces. For the vast majority of characterized binary PPIs, the specific amino acid sequence of their close contact regions remains unknown. There has been an important need for an experimental technology that can rapidly reveal the functionally important contact points of native protein complexes in solution. In this review, experimental techniques employing mass spectrometry to explore protein interaction binding sites are discussed. Hydrogen–deuterium exchange, hydroxyl radical footprinting, crosslinking and the newest technology protein painting are compared and contrasted.  相似文献   

6.
Genetics has played only a modest role in drug discovery, but new technologies will radically change this. Whole genome sequencing will identify new drug discovery targets, and emerging methods for the determination of gene function will increase the ability to select robust targets. Detection of single nucleotide polymorphisms and common polymorphisms will enhance the investigation of polygenic diseases and the use of genetics in drug development. Oligonucleotide arraying technologies will allow analysis of gene expression patterns in novel ways.  相似文献   

7.
8.
Edwards TA  Wilson AJ 《Amino acids》2011,41(3):743-754
Protein–protein interactions (PPIs) play a central role in virtually all biological processes and have been the focus of intense investigation from structural molecular biology to cell biology for the majority of the last two decades and, more recently, are emerging as important targets for pharmaceutical intervention. A common motif found at the interface of PPIs is the α-helix, suggesting that, in the same way as the “lock and key” model has evolved for competitive inhibition of enzymes, it should be possible to elaborate “rule-based” approaches for inhibition of helix-mediated PPIs. This review will describe the biological function and structural features of a series of representative helix-mediated PPIs and discuss approaches that are being developed to target these interactions with small molecules that employ non-natural amino acids.  相似文献   

9.
Peroxisome autophagy, also known as pexophagy, describes the wholesale degradation of peroxisomes via the vacuole, when organelles become damaged or redundant. In the methylotrophic yeast Hansenula polymorpha, pexophagy is stimulated when cells growing on methanol are exposed to excess glucose. Degradation of the peroxisomal membrane protein Pex3p, a process that does not involve the vacuole, was shown to trigger pexophagy. In this contribution, we have characterised pexophagy-associated Pex3p degradation further. We show that Pex3p breakdown depends on ubiquitin and confirm that Pex3p is a target for ubiquitination. Furthermore, we identify a role for the peroxisomal E3 ligases Pex2p and Pex10p in Pex3p degradation, suggesting the existence of a ubiquitin-dependent pathway involved in removing proteins from the peroxisomal membrane.  相似文献   

10.
11.
Diacylglycerol (DAG) kinase (DGK) modulates the balance between the two signaling lipids, DAG and phosphatidic acid (PA), by phosphorylating DAG to yield PA. To date, ten mammalian DGK isozymes have been identified. In addition to the C1 domains (protein kinase C-like zinc finger structures) conserved commonly in all DGKs, these isoforms possess a variety of regulatory domains of known and/or predicted functions, such as a pair of EF-hand motifs, a pleckstrin homology domain, a sterile alpha motif domain and ankyrin repeats. Beyond our expectations, recent studies have revealed that DGK isozymes play pivotal roles in a wide variety of signal transduction pathways conducting development, neural and immune responses, cytoskeleton reorganization and carcinogenesis. Moreover, there has been rapidly growing evidence indicating that individual DGK isoforms exert their specific roles through interactions with unique partner proteins such as protein kinase Cs, Ras guanyl nucleotide-releasing protein, chimaerins and phosphatidylinositol-4-phosphate 5-kinase. Therefore, an emerging paradigm for DGK is that the individual DGK isoforms assembled in their own signaling complexes should carry out spatio-temporally segregated tasks for a wide range of biological processes via regulating local, but not global, concentrations of DAG and/or PA.  相似文献   

12.
Taxol (paclitaxel) is widely used for the treatment of various kinds of cancers. Originally, the major source of taxol was bark of the Pacific yew tree (Taxus brevifolia). However, this proved devastating to natural populations of the trees. To protect the Pacific yew, alternatives to the use of trees are sought. One solution is the use of taxol or its precursors derived from fungi. A large number of endophytic fungi that reside within healthy plants have been reported to be taxol producers. However, fungal epiphytes, pathogens and saprophytes have also been found to produce taxol. Several strains of fungi belonging to species Metarhizium anisopliae and Cladosporium cladosporioides MD2 are very promising, producing taxol at levels up to 800 μg/L. This review examines the potential for production of taxol from fungi. The biology of taxol synthesis in fungi and measures which may improve taxol yield are also discussed.  相似文献   

13.
The many specific, yet overlapping and redundant activities of individual cytokines have been the basis for current concepts of therapeutical intervention. Cytokines are powerful two-edged weapons that can trigger a cascade of reactions and may show activities that often go beyond the single highly specific property that it is hoped they possess. Nevertheless, it can be stated that our new, though burgeoning, understanding of the biological mechanisms governing cytokine actions is an important contribution to medical knowledge. The crucial role of the anti-inflammatory cytokine, interleukin (IL)-10, in regulating potential molecular pathway mediating injury and cell death has attracted paramount attention in recent years. In this respect, the mitogen-activated protein kinase (MAPK) components have emerged as potential signalling cascades that regulate a plethora of cell functions, including inflammation and cell death. The biochemistry and molecular biology of cytokine actions, particularly IL-10, explain some well known and sometimes also some of the more obscure clinical aspects of the evolution of diseases.  相似文献   

14.
Utilizing genome sequence data from bacterial and fungal pathogens for the discovery of new antimicrobial agents has received considerable attention, both practical and critical, from the pharmaceutical and biotechnological communities. Although no new drugs derived from genomics-based discovery have been reported to be in a development pipeline, the utilization of genomics has revolutionized many aspects of drug discovery. The application, utility, opportunity, and challenges afforded by many of these new approaches are discussed.  相似文献   

15.
16.
The biochemical mechanisms by which polyamines influence plant growth and development are not known. One of mechanisms frequently proposed is that polyamines can bind to key cellular enzymes and modulate their activity. Polyamines have been reported to alter the activity of a number of enzymes in vitro. Among these the casein kinase-2 protein kinases are of particular interest, not only because of increasing recognition of the major role of protein phosphorylation in regulating plant cell metabolism, but also because these kinases have been specifically implicated in the phosphorylation of trans-acting factors and thus could regulate gene expression. Casein kinase-2-type protein kinases have been purified and characterized from both plants and animals. Their structural and biochemical properties appear to have been remarkably conserved throughout evolution. Most are stimulated by mM levels of polyamines. Although this concentration is within the range estimated to occur in plant cells, not enough is known about [polyamine] in subcellular compartments and about how rapidly this concentration can be altered by hormonal and environmental signals to predict whether polyamines play a major role in the regulation of casein kinase-2 protein kinase activity in vivo.  相似文献   

17.
Protein kinases are classified by the target amino acid in their substrates. Those protein kinases that phosphorylate hydroxyamino acids comprise two groups, the protein-tyrosine and protein-serine/threonine kinases, which, until recently, had been thought to be mutually exclusive. However, several new protein kinases have been discovered that, by the criterion of primary structure, would be classified as protein-serine/threonine kinases but which, surprisingly, are able to phosphorylate tyrosine residues. Even more surprising, there are reports of protein kinases that are capable of phosphorylating both tyrosine and serine/threonine residues. We review and discuss recent developments concerning these 'dal-specificity' protein kinases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号