首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Nuclear factor kappaB (NF-kappaB) represents a family of dimeric DNA binding proteins, the pleotropic form of which is a heterodimer composed of RelA and p50 subunits. The biological activity of NF-kappaB is controlled through its subcellular localization. Inactive NF-kappaB is sequestered in the cytoplasm by physical interaction with an inhibitor, IkappaBalpha. Signal-mediated IkappaBalpha degradation triggers the release and subsequent nuclear translocation of NF-kappaB. It remains unknown whether the NF-kappaB shuttling between the cytoplasm and nucleus is subjected to additional steps of regulation. In this study, we demonstrated that the RelA subunit of NF-kappaB exhibits strong cytoplasmic localization activity even in the absence of IkappaBalpha inhibition. The cytoplasmic distribution of RelA is largely mediated by a leucine-rich sequence homologous to the recently characterized nuclear export signal (NES). This putative NES is both required and sufficient to mediate cytoplasmic localization of RelA as well as that of heterologous proteins. Furthermore, the cytoplasmic distribution of RelA is sensitive to a nuclear export inhibitor, leptomycin B, suggesting that RelA undergoes continuous nuclear export. Interestingly, expression of p50 prevents the cytoplasmic expression of RelA, leading to the nuclear accumulation of both RelA and p50. Together, these results suggest that the nuclear and cytoplasmic shuttling of RelA is regulated by both an intrinsic NES-like sequence and the p50 subunit of NF-kappaB.  相似文献   

5.
6.
A highly fluorescent mutant form of the green fluorescent protein (GFP) has been fused to the human nuclear factor kappaB (NF-kappaB) p50 and p105 (p50/IkappaB gamma), a precursor protein of NF-kappaB p50. GFP-p50 and GFP-p105 were expressed in monkey COS-7 cells and human HeLa cells. Translocation of these chimeric proteins was observed by confocal laser scanning microscopy. GFP-p50 (without IkappaB gamma) in the transfected cells resided in the nucleus. On the other hand, GFP-p105 (GFP-p50 with IkappaB gamma) localized only in the cytoplasm before stimulation and translocated to the nucleus with stimulant specificity similar to that of native NF-kappaB/IkappaB. In addition, the translocation of NF-kappaB to the nucleus had a distinct lag time (a quiescent time) in the target cells. The lag time lasted 10-20 min after stimulation with hydrogen peroxide or tumor necrosis factor alpha. It was suggested that this might be due to the existence of a limiting step where NF-kappaB is released from NF-kappaB/IkappaB by the proteasome.  相似文献   

7.
8.
9.
10.
Chen Y  Li HH  Fu J  Wang XF  Ren YB  Dong LW  Tang SH  Liu SQ  Wu MC  Wang HY 《Cell research》2007,17(12):1020-1029
p28^GANK (also known as PSMD 10, p28 and gankyrin) is an ankyrin repeat anti-apoptotic oncoprotein that is commonly overexpressed in hepatocellular carcinomas and increases the degradation of p53 and Rb. NF-IκB (nuclear factor-κB) is known to be sequestered in the cytoplasm by IκB (inhibitor of NF-κB) proteins [1, 2], but much less is known about the cytoplasmic retention of NF-κB by other cellular proteins. Here we show that p28^GANK inhibits NF-κB activity. As a nuclear-cytoplasmic shuttling protein, p28^GANK directly binds to NF-κB/RelA and exports RelA from nucleus through a chromosomal region maintenance-1 (CRM-1) dependent pathway, which results in the cytoplasmic retention of NF- κB/RelA. We demonstrate that all the ankyrin repeats of p28^GANK are required for the interaction with RelA and that the N terminus of p28^GANK, which contains the nuclear export sequence (NES), is responsible for suppressing NF-κB/RelA nuclear translocation. These results suggest that overexpression of p28^GANK prevents the nuclear localization and inhibits the activity of NF-κB/RelA.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号