首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The phenotypic characteristics of 26 ptg mutations in T4 gene 23 are described. All were located in three tight clusters in that gene and, by definition of ptg mutations, all produced giant phage. Intermediate petite phage, which invariably made up a substantial fraction of the progeny of these mutants, appeared to be a unique product of gene 23 mutations. Isometric petite phage were produced in significant numbers by strains with mutations at only 4 of the 10 sites identified with the PTG phenotype. The data presented indicate that there was little if any variation in the lengths of the normal, the intermediate petite, and the isometric petite classes. The frequencies of those capsid types were fairly specific for the individual mutations. The giant capsids that resulted from ptg mutations also had characteristic length distributions, of which three types were distinguished. These highly specific effects of gene 23 ptg mutations on capsid length regulation of T4 imply that the product of gene 23, gp23, plays a significant role in controlling the length of its capsid. The restrictions these observations place on a model for T4 capsid length regulation are discussed briefly.  相似文献   

2.
The T4 gene 23 product (gp23) encodes the major structural protein of the mature capsid. Mutations in this gene have been described which disrupt the normal length-determining mechanism (A.H. Doermann, F.A. Eiserling, and L. Boehner, J. Virol. 12:374-385, 1973). Mutants which produce high levels of petite and giant phage (ptg) are restricted to three tight clusters in gene 23 (A.H. Doermann, A. Pao, and P. Jackson, J. Virol. 61:2823-2827, 1987). Twenty-six of these ptg mutations were cloned, and their DNA sequence alterations were determined. Each member of this set of ptg mutants arose from a single mutation, and the set defined 10 different sites at which ptg mutations can occur in gene 23. Two petite (pt) mutations in gene 23 (pt21-34 and ptE920g), which produce high frequencies of petite particles but no giants, were also sequenced. Both pt21-34 and ptE920g were shown to include multiple mutations. The phenotypes attributed to both pt and ptg mutations are discussed relative to the mechanism of capsid morphogenesis. A site-directed mutation (SD-1E) was created at the ptgNg191 site, and its phenotypic consequences were examined. Plaque morphology revertants arising from a gene 23 mutant derivative of pt21-34 and from SD-1E were isolated. A preliminary mapping of the mutation(s) responsible for their revertant phenotypes suggested that both intra- and extragenic suppressors of the petite phenotype can be isolated by this method.  相似文献   

3.
A bacteriophage T4 mutation (ptg19-80c) located in gene 23, which encodes the major structural protein of the T4 capsid, results in the production of capsids of abnormal length. Mutations outside gene 23 which partially suppress ptg19-80c have been described in the accompanying paper (D. H. Doherty, J. Virol. 43:641-654, 1982). Characterization of these suppressors was extended. A complementation test suggested that the suppressors were in genes 22 and 24. These genes coded for the major component of the morphogenetic core of the capsid precursor and the vertex protein of the capsid, respectively. The suppressor mutations were found to have no obvious phenotype in the absence of ptg19-80c. Suppression was shown to be allele specific: other ptg mutations at different sites in gene 23 were not suppressed by the suppressors of ptg19-80c. These results indicated that specific interactions among the three proteins gp22, gp23, and gp24 may play a role in the regulation of T4 capsid-length determination. Current models for capsid-length determination are considered in the light of these results.  相似文献   

4.
The T4 mutation ptg19-80 affects the mechanism of capsid-length determination. It is located in gene 23, which encodes the major structural protein of the capsid. The mutation results in the production of abnormal-length capsids in high frequencies. This paper describes the isolation and partial characterization of second-site revertants of ptg19-80. In the course of their analysis, it was discovered that ptg19-80 is itself a double mutation consisting of a gene 23 mutation (ptg19-80c), which causes the morphogenetic defect, and a suppressor mutation located near the lysozyme gene. Phenotypic characterization of nine pseudo-wild-type revertants of this double-mutation revealed that these revertants all produced lower frequencies of abnormal capsids than did ptg19-80. Seven of these revertants were shown to contain two suppressor mutations, one mapping in or near gene 22 and done mapping in or near gene 24. Both mutations were required for suppression. These suppressors displayed no discernible phenotype in the absence of ptg19-80c.  相似文献   

5.
The product of gene 31 is normally required for assembly of the T4 capsid. Two mutations that each bypass that requirement are shown to be located at separate sites in gene 23, which encodes the major structural protein of the capsid. A second phenotypic effect that characterizes both bypass31 mutant strains is the ability to multiply in host-defective strains, such as hdB3-1 and groEL mutants, on which wild-type T4 is unable to assemble capsids. The genetic data indicate that both phenotypic effects are due to the bypass31 mutation. Elimination of the requirement for both the phage protein, gp31, and the host protein, GroEL, by either of two single mutations in gene 23 indicates that GroEL and gp31 are normally needed to interact with gp23 in capsid assembly of wild-type T4.  相似文献   

6.
A H Doermann  A Pao    P Jackson 《Journal of virology》1987,61(9):2823-2827
Fifty-two new bacteriophage T4 ptg mutations have been isolated by selecting for the giant-capsid phenotype they display. Genetic mapping placed all of them at eight sites, all located in gene 23. These sites were clustered in three locations, one near amber B17 (gene 23 nucleotide [NT] 268), another centrally placed between amE506 (NT 706) and amE1270 (NT 925), and the third between amC208 (NT 1297) and amE1236 (NT 1489). The lack of a selective system for identifying recombinant genotypes when dealing with the very close linkages found within these clusters opens the possibility that more than eight sites are represented in this set of mutations. Since one site was represented by only one mutation, it seems likely that further searching might uncover additional sites. It is suggested that the clustering of mutations observed here identifies regions of the gene 23 product that play a role in regulating the capsid length of T4.  相似文献   

7.
8.
The study of bacteriophage T4 assembly has revealed regulatory mechanisms pertinent not only to viruses but also to macromolecular complexes. The capsid of bacteriophage T4 is composed of the major capsid protein gp23, and a minor capsid protein gp24, which is arranged as pentamers at the vertices of the capsid. In this study the T4 capsid protein gp24 and its mutant forms were overexpressed and purified to homogeneity. The overexpression from plasmid vectors of all the constructs in Escherichia coli yields biologically active protein in vivo as determined by assembly of active virus following infection with inactivated gene 24 mutant viruses. The gp24 mutant was subjected to surface entropy reduction by mutagenesis and reductive alkylation in order to improve its crystallization properties and diffraction quality. To determine if surface mutagenesis targeting would result in diffractable crystals, two glutamate to alanine mutations (E89A,E90A) were introduced. We report here the biochemical observations and consequent mutagenesis experiment that resulted in improvements in the stability, crystallizability and crystal quality of gp24 without affecting the overall folding. Rational modification of the protein surface to achieve crystallization appears promising for improving crystallization behavior and crystal diffracting qualities. The crystal of gp24(E89A,E90A) diffracted to 2.6A resolution compared to wild-type gp24 at 3.80A resolution under the same experimental conditions. Surface mutation proved to be a better method than reductive methylation for improving diffraction quality of the gp24 crystals.  相似文献   

9.
Bacteriophage T4 capsid is an elongated icosahedron decorated with 155 copies of Hoc, a nonessential highly antigenic outer capsid protein. One Hoc monomer is present in the center of each major capsid protein (gp23*) hexon. We describe an in vitro assembly system which allows display of HIV antigens, p24-gag, Nef, and an engineered gp41 C-peptide trimer, on phage T4 capsid surface through Hoc-capsid interactions. In-frame fusions were constructed by splicing the human immunodeficiency virus (HIV) genes to the 5' or 3' end of the Hoc gene. The Hoc fusion proteins were expressed, purified, and displayed on hoc(-) phage particles in a defined in vitro system. Single or multiple antigens were efficiently displayed, leading to saturation of all available capsid binding sites. The displayed p24 was highly immunogenic in mice in the absence of any external adjuvant, eliciting strong p24-specific antibodies, as well as Th1 and Th2 cellular responses with a bias toward the Th2 response. The phage T4 system offers new direction and insights for HIV vaccine development with the potential to increase the breadth of both cellular and humoral immune responses.  相似文献   

10.
Many large viral capsids require special pentameric proteins at their fivefold vertices. Nevertheless, deletion of the special vertex protein gene product 24 (gp24) in bacteriophage T4 can be compensated by mutations in the homologous major capsid protein gp23. The structure of such a mutant virus, determined by cryo-electron microscopy to 26 angstroms, shows that the gp24 pentamers are replaced by mutant major capsid protein (gp23) pentamers at the vertices, thus re-creating a viral capsid prior to the evolution of specialized major capsid proteins and vertex proteins. The mutant gp23* pentamer is structurally similar to the wild-type gp24* pentamer but the insertion domain is slightly more distant from the gp23* pentamer center. There are additional SOC molecules around the gp23* pentamers in the mutant virus that were not present around the gp24* pentamers in the wild-type virus.  相似文献   

11.
Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.  相似文献   

12.
A mutation (byp24) affecting the N-terminal region of p23 will suppress the lethal effects of am and ts mutations in gene 24. In the presence of normal p24, the byp24 alteration causes a delay in the cleavage of capsid proteins and the assembly of a high percentage of isometric, short-headed particles; therefore, the byp24 mutation can affect the length of the T4 capsid. In the absence of p24, 24?byp24 double mutants show a reduced rate of cleavage of capsid precursor proteins, and a reduced rate of virus assembly.Iminunoprecipitation with anti-p24 serum has shown the presence of both p24 and p24c in wild-type phage particles. The 24?byp24 particles contain no p24 or p24c, as determined by immunoprecipitation, urea/acrylamide gel electrophoresis, and two-dimensional isoelectric focusing, urea/acrylamide gradient gel electrophoresis. They have a normal electron microscopic appearance, pH stability, and heat stability; but they are more resistant to osmotic shock than wild-type T4. We suggest that p24 normally functions in the initiation of phage T4 capsid protein cleavage reactions.  相似文献   

13.
Four new mutants are described whose phenotypic expression affects the length of the head of bacteriophage T4D. All mutants produce some phenotypically normal phage particles. Mutant pt21-34 also produces at least two size classes of phage particle which have heads that are shorter than normal. The other three mutants, ptg19-2, ptg19-80, and ptg191, produce, in addition to phages with normal and with shorter-than-normal heads, giant phages with heads from 1.5 to at least 10 times the normal length. All mutations are clustered near gene 23. Giant phage particles have the following properties: they are infectious and contain and inject multiple genomes as a single continuous bihelical DNA molecule of greater-than-unit length. Their frequency, relative to the total plaque-former population, increases late in the infectious cycle. They have a normal diameter, variable length, and a buoyant density range in CsCl from equal to slightly greater than that of normal phage. The arrangement of capsomers is visible in the capsids, which are composed of cleaved gene 23 protein.  相似文献   

14.
In tailed icosahedral bacteriophages the connection between the 5-fold symmetric environment of the portal vertex in the capsid and the 6-fold symmetric phage tail is formed by a complex interface structure. The current study provides the detailed analysis of the assembly and structural organisation of such an interface within a phage having a long tail. The region of the interface assembled as part of the viral capsid (connector) was purified from DNA-filled capsids of the Bacillus subtilis bacteriophage SPP1. It is composed of oligomers of gp6, the SPP1 portal protein, of gp15, and of gp16. The SPP1 connector structure is formed by a mushroom-like portal protein whose cap faces the interior of the viral capsid in intact virions, an annular structure below the stem of the mushroom, and a second narrower annulus that is in direct contact with the helical tail extremity. The layered arrangement correlates to the stacking of gp6, gp15, and gp16 on top of the tail. The gp16 ring is exposed to the virion outside. During SPP1 morphogenesis, gp6 participates in the procapsid assembly reaction, an early step in the assembly pathway, while gp15 and gp16 bind to the capsid portal vertex after viral chromosome encapsidation. gp16 is processed during or after tail attachment to the connector region. The portal protein gp6 has 12-fold cyclical symmetry in the connector structure, whereas assembly-na?ve gp6 exhibits 13-fold symmetry. We propose that it is the interaction of gp6 with other viral morphogenetic proteins that drives its assembly into the 12-mer state.  相似文献   

15.
An essential component in the assembly of nucleocapsids of tailed bacteriophages and of herpes viruses is the portal protein that is located at the unique vertex of the icosahedral capsid through which DNA movements occur. A library of mutations in the bacteriophage SPP1 portal protein (gp6) was generated by random mutagenesis of gene 6. Screening of the library allowed identification of 67 single amino acid substitutions that impair portal protein function. Most of the mutations cluster within stretches of a few amino acids in the gp6 carboxyl-terminus. The mutations were divided into five classes according to the step of virus assembly that they impair: (1) production of stable gp6; (2) interaction of gp6 with the minor capsid protein gp7; (3) incorporation of gp6 in the procapsid structure; (4) DNA packaging; and (5) sizing of the packaged DNA molecule. Most of the mutations fell in classes 3 and 4. This is the first high-resolution functional map of a portal protein, in which its function at different steps of viral assembly can be directly correlated with specific regions of its sequence. The work provides a framework for the understanding of central processes in the assembly of viruses that use specialized portals to govern entry and exit of DNA from the viral capsid.  相似文献   

16.
We have found that two different temperature-sensitive mutations in gene 22, tsA74 and ts22-2, produce high frequencies (up to 85%) of petite phage particles when grown at a permissive or intermediate temperature. Moreover, the ratio of petite to normal particles in a lysate depends upon the temperature at which the phage are grown. These petite phage particles appear to have approximately isometric heads when viewed in the electron microscope, and can be distinguished from normal particles by their sedimentation coefficient and by their buoyant density in CsCl. They are biologically active as detected by their ability to complement a co-infecting amber helper phage. Lysates of both mutants grown at a permissive temperature reveal not only a significant number of petite phage particles in the electron microscope, but also sizeable classes of wider-than-normal particles, particles having abnormally attached tails, and others having more than one tail.Striking protein differences exist between the purified phage particles of tsA74 or ts22-2 and wild-type T4. B11, a 61,000 molecular weight head protein, is completely absent from the phage particles of both mutants, and the internal protein IPIII1 is present in reduced amounts as compared to wild type. The precursor to B11 is present in the lysates, but these mutations appear to prevent its incorporation into heads, so it does not become cleaved.The product of gene 22 (P22) is known to be the major protein of the morphogenetic core of the T4 head. Besides the mutations reported here, several mutations which affect head length have been found in gene 23, which codes for the major capsid protein (Doermann et al., 1973b). We suggest a model in which head length is determined by an interaction between the core (P22 and IPIII) and the outer shell (P23).  相似文献   

17.
Two amber mutations in gene 67 of bacteriophage T4 were constructed by oligonucleotide-directed mutagenesis and the resulting mutated genes were recombined back into the phage genome and their phenotype was studied. The 67amK1 mutation is close to the amino terminus of the gene, and phage carrying this mutation are unable to form plaques on suppressor-negative hosts. A second mutation, 67amK2, which lies in the middle of the gene, three codons N-terminal to a proteolytic cleavage site, produces a small number of viable phage particles. In suppressor-negative hosts, both mutants produce polyheads and proheads. 67amK1 assembles only few proheads that have a disorganized core structure, as judged from thin sections of infected cells. The proheads and the mature phages of both mutants are mainly isometric rather than having the usual prolate shape. Depending on the 67 mutant and the host, between 20% and 73% of the particles that are produced are isometric, and 1 to 10% are two-tailed biprolate particles. 67amK2 phages grown on a supD suppressor strain that inserts serine in place of the wild-type leucine do not contain gp67* derived from gene product 67 (gp67) by proteolytic cleavage. This demonstrates the importance of the correct amino acid at this position in the protein. Other abnormalities in these 67amK2 phages are the presence of uncleaved scaffolding core proteins (IPIII and gp68), indicating a structural alteration in the prohead scaffold, resulting in only partial cleavage. In wild-type phages these proteins are found in the head only in the cleaved form. With double-mutants of 67 with mutations in the major shell protein gp23 no naked scaffolding cores were found, confirming the necessity of gp67 for the assembly or persistence of a "normal" core.  相似文献   

18.
After polymerization of the phage T4 prohead is complete, its capsid expands by approximately 16%, is greatly stabilized, and acquires the capacity to bind accessory proteins. These effects are manifestations of a large-scale, irreversible, conformational change undergone by the major capsid protein, gp23 (521 residues) which is cleaved to gp23* (residues 66-521) during this maturation process. In order to explore its structural basis, we have performed immunoelectron microscopy with antibodies raised against synthetic peptides that correspond to precisely defined segments of the amino acid sequence of gp23. These antibodies were used to label purified polyheads (tubular polymorphic variants of the normal icosahedral capsid), in experiments designed to impose constraints on the possible foldings of the gp23/gp23* polypeptide chains in their successive conformational states. Peptide 1 (residues 48-57), part of the gp23-delta domain that is excised when gp23 is converted to gp23*, resides on the inner surface of the precursor surface lattice, but--if not proteolyzed--is found on the outer surface of the mature surface lattice. Peptide 2 (residues 65-73), immediately distal to the cleavage site, is located on the inside of the precursor surface lattice, and remains there subsequent to expansion. Peptide 3 (residues 139-146) is translocated in the opposite direction from peptide 1, i.e., from the outer to the inner surface upon expansion; moreover, expansion greatly increases the polyheads' affinity for these antibodies. Peptide 5 (residues 301-308) is located on the inside in both the precursor and the mature states. Taking into account data from other sources, these observations imply that the conformational change that underlies capsid expansion involves a radical reorganization of the proteins' structure, in which at least three distinct epitopes, situated in widely differing parts of the polypeptide chain, are translocated from one side to the other. Moreover, the amino-terminal portion of gp23/gp23*, around the cleavage site, is particularly affected.  相似文献   

19.
Heat cleavage of asp-pro peptide bonds was used to probe the primary structures of the Phage T4 major capsid protein precursor, gp23, its mature capsid form gp23*, and a DNA-dependent ATPase, called capsizyme. This analysis suggests that capsizyme is a gp23** resulting from the N-terminal processing found in gp23* as well as shortening at the C-terminus. Photoaffinity labeling with Azido-ATP and BrU-DNA, followed by heat cleavage, suggests binding sites for these compounds toward the C-terminus of gp23**, suggesting localization of functions within the gp23 primary sequence. Site-directed mutagenesis experiments were targeted therefore to the C-terminal end of g23 as well as to its processing sites. N-terminal processing site modification supports the consensus gp21 proteinase cleavage rule, whereas mutagenesis at the C-terminus suggests that the C-terminal alteration is unlikely to result from a gp21-morphogenesis proteinase cleavage. Amino acid replacements in gp23 at newly introduced amber sites reveal a new g23 mutant phenotype, defective partially DNA-filled heads, in support of the hypothesis that gp23 and its products function directly in the DNA packaging mechanism.  相似文献   

20.
By use of mixed infections with conditional lethal mutations in the head genes and an osmotic shock-resistant mutant we have demonstrated that osmotic shock resistance is controlled by gene 24. Using acrylamide gel electrophoresis combined with the "immune replicate" technique, we confirmed the positions of gene products 24 and 24* (P24 and P24*). In this paper we have still used the notation "P24," etc., for designating the product of gene 23, etc., although we prefer and use in general the designation "gp23" as introduced by Casjens and King (Annu. Rev. Biochem. 44:585, 1975). The reason for using the old notation is because the illustrations were prepared several years ago.) P24 ts showed a significantly slower mobility. Both osmotic shock-resistant and -sensitive mature phages contain 24*. Giants constructed with the Osr phage showed the same surface lattice as normal phage. Through temperature-shift experiments with 24(tsL90) alone and in combinations, we studied the phages which are matured after the shift to permissive temperature in the absence of new protein synthesis. Our results strongly suggest that only a fraction of the total phage complement of gene 24-controlled proteins is involved in determining the phenotype of shock resistance, and the remainder is necessary to mature the head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号