首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human stefin B (cystatin B) is an intracellular cysteine proteinase inhibitor broadly distributed in different tissues. Here, we show that recombinant human stefin B readily forms amyloid fibrils in vitro. It dimerises and further oligomerises, starting from the native-like acid intermediate, I(N), populated at pH 5. On standing at room temperature it produces regular (over 4 microm long) fibrils over a period of several months. These have been visualised by transmission electron microscopy and atomic force microscopy. Their cross-sectional diameter is about 14 nm and blocks of 27 nm repeat longitudinally. The fibrils are smooth, of unbranched surface, consistent with findings of other amyloid fibrils. Thioflavin T fluorescence spectra as a function of time were recorded and Congo red dye binding to the fibrils was demonstrated. Adding 10% (v/v) trifluoroethanol resulted in an increased rate of fibrillation with a typical lag phase. The finding that human stefin B, in contrast to the homologue stefin A, forms amyloid fibrils rather easily should promote further studies of the protein's behaviour in vivo, and/or as a model system for fibrillogenesis.  相似文献   

2.
We describe expression, purification, and characterization of three site-specific mutants of recombinant human stefin B: H75W, P36G, and P79S. The far- and near-UV CD spectra have shown that they have similar secondary and tertiary structures to the parent protein. The elution on gel-filtration suggests that recombinant human stefin B and the P36G variant are predominantly monomers, whereas the P79S variant is a dimer. ANS dye binding, reflecting exposed hydrophobic patches, is highest for the P36G variant, both at pH 5 and 3. ANS dye binding also is increased for stefin B and the other two variants at pH 3. Under the chosen conditions the highest tendency to form amyloid fibrils has been shown for the recombinant human stefin B. The P79S variant demonstrates a longer lag phase and a lower rate of fibril formation, while the P36G variant is most prone to amorphous aggregation. This was demonstrated by ThT fluorescence as a function of time and by transmission electron microscopy.  相似文献   

3.
By using ThT fluorescence, X-ray diffraction, and atomic force microscopy (AFM), it has been shown that human stefins A and B (subfamily A of cystatins) form amyloid fibrils. Both protein fibrils show the 4.7 A and 10 A reflections characteristic for cross beta-structure. Similar height of approximately 3 nm and longitudinal repeat of 25-27 nm were observed by AFM for both protein fibrils. Fibrils with a double height of 5.6 nm were only observed with stefin A. The fibril's width for stefin A fibrils, as observed by transmission electron microscopy (TEM), was in the same range as previously reported for stefin B (Zerovnik et al., Biochem Biophys Acta 2002;1594:1-5). The conditions needed to undergo fibrillation differ, though. The amyloid fibrils start to form at pH 5 for stefin B, whereas in stefin A, preheated sample has to be acidified to pH < 2.5. In both cases, adding TFE, seeding, and alignment in a strong magnetic field accelerate the fibril growth. Visual analysis of the three-dimensional structures of monomers and domain-swapped dimers suggests that major differences in stability of both homologues stem from arrangement of specific salt bridges, which fix alpha-helix (and the alpha-loop) to beta-sheet in stefin A monomeric and dimeric forms.  相似文献   

4.
The amyloid fibril field is briefly described, with some stress put on differences between various proteins and possible role for domain swapping. In the main body of the text, first, a short review is given of the folding properties of both human stefins, alpha/beta-type globular proteins of 53% identity with a known three-dimensional fold. Second, in vitro study of amyloid fibril formation by human stefin B (type I cystatin) is described. Solvents of pH 4.8 and pH 3.3 with and without 2,2,2-trifluoroethanol (TFE) were probed, as it has been shown previously that stefin B forms acid intermediates, a native-like and molten globule intermediate, respectively. The kinetics of fibrillation were measured by thioflavin T fluorescence and CD. At pH 3.3, the protein is initially in the molten globule state. The fibrillation is faster than at pH 4.8; however, there is more aggregation observed. On adding TFE at each pH, the fibril formation is further accelerated.  相似文献   

5.
The role of the aromatic residue at site 75 to protein stability, the mechanism of folding and the mechanism of amyloid-fibril formation were investigated for the human stefin B variant (bearing Y at site 31) and its point mutation H75W. With an aim to reveal the conformation at the cross-road between folding and aggregation, first, the kinetics of folding and oligomer formation by human stefin B(Y31) variant were studied. It was found to fold in three kinetic phases at pH 4.8 and 10% TFE; the pH and solvent conditions that transform the protein into amyloid fibrils at longer times. The same pH leads to the formation of native-like intermediate (known from previous studies of this variant), meaning that the process of folding and amyloid-fibril formation share the same structural intermediate, which is in this case native-like and dimeric. At pH 5.8 and 7.0 stefin B folded to the native state in four kinetic phases over two intermediates. In distinction, the mutant H75W did not fold to completion, ending in intermediate states at all pH values studied: 4.8, 5.8 and 7.0. At pH 4.8 and 5.8, the mutant folded in one kinetic phase to the intermediate of the “molten globule” type, which leads to the conclusion that its mechanism of folding differs from the one of the parent stefin B at the same pH. At pH 7.0 the mutant H75W folded in three kinetic phases to a native-like intermediate, analogous to folding of stefin B at pH 4.8.  相似文献   

6.
Recombinant human cysteine protease inhibitor, stefin A, was expressed in both Escherichia coli and BS-C-1 monkey kidney cells utilizing pET and recombinant vaccinia virus systems, respectively. The expressed protein was purified and analyzed by SDS-PAGE and Western blot analysis utilizing a polyclonal antibody against rat cystatin alpha. In both cases the purified protein appeared as a single band corresponding to the molecular weight of stefin A ( approximately 10kDa). Viability of the expressed stefin A was determined by the inhibition of the plant cysteine protease, papain. Recombinant human stefin A expressed in both E. coli and BS-C-1 cells, was shown to almost completely inhibit papain. The expression of a fully functional recombinant human stefin A in the bacterial system provides a highly efficient tool for the production of large quantities of the protein. This can be an important tool in kinetic studies as well as in production of antibodies for other analytical studies (immunoblot, immunohistochemical studies, etc.). Expression in the mammalian cells, on the other hand, can provide a significant research tool to study the functional roles of stefin A in mammalian systems such as regulation of cysteine proteases.  相似文献   

7.
Stefin A, an intracellular inhibitor of cysteine proteinases, is expressed most abundantly in epithelial cells and in cells of lymphatic origin. In order to study its role in normal and pathological conditions we have prepared and characterized monoclonal antibodies against recombinant stefin A. Two high affinity monoclonal antibodies (mAbs) (A22 and C52) were tested for binding to free and papain-complexed stefin A and to a chimeric inhibitor, consisting of 61 amino acid residues of stefin A and 37 carboxy-terminal residues of stefin B. mAb A22 recognized not only free stefin A but also stefin A in complex with papain. The mAbs were further tested for their cross-reactivity against stefin A and B isolated from different mammalian species. On the basis of sequence similarity and tertiary structure of human stefin A we have prepared three mutants - Glu33Lys, Asp61Gly and Asn62Tyr and their reactivity with the mAbs was tested. The binding affinities of mAb A22 for the Asp61Gly and Asn62Tyr mutants were significantly lower, indicating thatthe two amino acids are part of the stefin A epitope recognized by A22. The binding of both mAbs to the mutants Gly4Arg and Gly4Glu was comparable to wild-type stefin A.  相似文献   

8.
We show that human stefin B, a protease inhibitor from the family of cystatins, is a copper binding protein, unlike stefin A. We have used isothermal titration calorimetry to directly monitor the binding event at pH 7 and pH 5. At pH 7 stefin B shows a picomolar affinity for copper but at pH 5 the affinity is in the nanomolar range. There is no difference in the affinity of copper between the wildtype stefin B (E31 isoform) and a variant (Y31 isoform), whereas the mutant (P79S), which is tetrameric, does not bind copper. The conformation of stefin B remains unaltered by copper binding. It is known that below pH 5 stefin B undergoes a conformational change and amyloid fibril formation. We show that copper binding inhibits the amyloid fibril formation and, to a lesser degree, the initial aggregation. Similarities to and differences from other copper binding amyloidogenic proteins are discussed.  相似文献   

9.
Many questions in the field of protein aggregation to amyloid fibrils remain open. In this review we describe predominantly in vitro studies of oligomerization and amyloid fibril formation by human stefins A and B. In human stefin B amyloidogenesis in vitro we have observed some general and many specific properties of its prefibrillar oligomers and amyloid fibrils. One characteristic feature in common to stefins and cystatins (and possibly some other amyloid proteins) is domain-swapping. In addition to solution structure of the domain-swapped dimer of stefin A, we recently have determined 3D structure of stefin B tetramer, which proved to be composed from two domain-swapped dimers, whose interaction occurs by a proline switch in the loop surrounding the conserved Pro 74. Studying the mechanism of fibril formation by stefin B, we found that the nucleation and fibril elongation reactions have energies of activation (Ea’s) in the range of proline isomerisation, strongly indicating importance of the Pro at site 74 and/or other prolines in the sequence. Correlation between toxicity of the prefibrillar oligomers and their interaction with acidic phospholipids was demonstrated. Stefin B was shown to interact with amyloid-beta peptide of Alzheimer’s disease in an oligomer specific manner, both in vitro and in the cells. It also has been shown that endogenous stefin B (with E at site 31) but especially the EPM1 mutant R68X and Y31-stefin B variant, and to a lesser extent EPM1 mutant G4R, are prone to form aggregates in cells.  相似文献   

10.
Cloning a synthetic gene for human stefin B and its expression in E. coli   总被引:1,自引:0,他引:1  
A gene coding for human stefin B was synthesized by the solid-phase phosphite method and cloned in the pUC8 cloning vector. The insert with the verified DNA sequence was subcloned into two expression vectors and expressed in E. coli as a fusion protein with beta-galactosidase and as a native protein. The CNBr cleaved fusion protein and the native recombinant stefin B were inhibitory to papain and reacted with antibodies against human stefin B.  相似文献   

11.
We report that Pro74 in human stefin B is critical for fibril formation and that proline isomerization plays an important role. The stefin B P74S mutant did not fibrillate over the time of observation at 25 °C, and it exhibited a prolonged lag phase at 30 °C and 37 °C. The peptidyl prolyl cis/trans isomerase cyclophilin A, when added to the wild-type protein, exerted two effects: it prolonged the lag phase and increased the yield and length of the fibrils. Addition of the inactive cyclophilin A R55A variant still resulted in a prolonged lag phase but did not mediate the increase of the final fibril yield. These results demonstrate that peptidyl prolyl cis/trans isomerism is rate-limiting in stefin B fibril formation.  相似文献   

12.
A synthetic gene coding for the human intracellular cysteine proteinase inhibitor, stefin B, was constructed from 13 chemically synthesized oligonucleotides according to the method of Khorana. The gene was inserted into the plasmid vector pTZ, amplified and sequenced. For expression, a temperature-inducible system producing fusion proteins was used. With the vector pEx31A containing the synthetic cystatin B gene, E. coli strain 537 produced a fusion protein of the N-terminal part of bacteriophage MS-2 polymerase and [Met-2Gly-1]stefin B. Lysates of the induced bacteria were inhibitorily active against papain. The fusion protein was expressed in high yield (about 20% of total E. coli proteins) and mostly deposited as inclusion bodies. The unfolded fusion protein was partially purified in the presence of urea. After refolding, approx. 6% of the protein was inhibitorily active against papain, human cathepsin H and B. Des[Met1,2(2)]stefin B was released by cyanogen bromide cleavage of the fusion protein and identified by N-terminal amino-acid sequence analysis. The non-separated cleavage products were also inhibitorily active after refolding. The estimated inhibition constants for the fusion protein and its cleavage products were similar to those reported for natural stefin B.  相似文献   

13.
Stefin B (cystatin B) is an inhibitor of lysosomal cysteine cathepsins and does not inhibit cathepsin D, E (aspartic) or cathepsin G (serine) proteinases. In this study, we have investigated apoptosis triggered by camptothecin, staurosporin (STS), and anti-CD95 monoclonal antibody in the thymocytes from the stefin B-deficient mice and wild-type mice. We have observed increased sensibility to STS-induced apoptosis in the thymocytes of stefin B-deficient mice. Pretreatment of cells with pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone completely inhibited phosphatidylserine externalization and caspase activation, while treatment with inhibitor of calpains- and papain-like cathepsins (2S,3S)-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation nor phosphatidylserine exposure. We conclude that sensitization to apoptosis induced by STS in thymocytes of stefin B-deficient and wild-type mice is not dependent on cathepsin inhibition by stefin B.  相似文献   

14.
The folding of human stefin B has been studied by several spectroscopic probes. Stopped-flow traces obtained by circular dichroism in the near and far UV, by tyrosine fluorescence, and by extrinsic probe ANS fluorescence are compared. Most (60 ± 5%) of the native signal in the far UV circular dichroism (CD) appeared within 10 ms in an unresolved “burst” phase, which was followed by a fast phase (t = 83 ms) and a slow phase (t = 25 s) with amplitudes of 30% and 10%, respectively. Similar fast and slow phases were also evident in the near UV CD, ANS fluorescence, and tyrosine fluorescence. By contrast, human stefin A, which has a very similar structure, exhibited only one kinetic phase of folding (t = 6 s) detected by all the spectroscopic probes, which occurred subsequent to an initial “burst” phase observed by far UV CD. It is interesting that despite close structural similarity of both homologues they fold differently, and that the less stable human stefin B folds faster by an order of magnitude (comparing the non-proline limited phase). To gain more information on the stefin B folding mechanism, effects of pH and trifluoroethanol (TFE) on the fast and slow phases were investigated by several spectroscopic probes. If folding was performed in the presence of 7% of TFE, rate acceleration and difference in the mechanism were observed. Protein 32:296–303, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Myoclonus epilepsy of type 1 (EPM1) is a rare monogenic progressive and degenerative epilepsy, also known under the name Unverricht-Lundborg disease. With the aim of comparing their behavior in vitro, wild-type (wt) human stefin B (cystatin B) and the G4R and the R68X mutants observed in EPM1 were expressed and isolated from the Escherichia coli lysate. The R68X mutant (Arg68Stop) is a peptide of 67 amino acids from the N terminus of stefin B. CD spectra have shown that the R68X peptide is not folded, in contrast to the G4R mutant, which folds like wild type. The wild type and the G4R mutant were unfolded by urea and by trifluoroethanol (TFE). It has been shown that both proteins have closely similar stability and that at pH 4.8, where a native-like intermediate was demonstrated, TFE induces unfolding intermediates prior to the major transition to the all-alpha-helical state. Kinetics of fibril formation were followed by Thioflavin T fluorescence while the accompanying changes of morphology were followed by the transmission electron microscopy (TEM). For the two folded proteins the optimal concentration of TFE producing extensive lag phases and high fibril yields was predenaturational, 9% (v/v). The unfolded R68X peptide, which is highly prone to aggregate, formed amyloid fibrils in aqueous solution and in predenaturing 3% TFE. The G4R mutant exhibited a much longer lag phase than the wild type, with the accumulation of prefibrillar aggregates. Implications for pathology in view of the higher toxicity of prefibrillar aggregates to cells are discussed.  相似文献   

16.
We describe studies performed thus far on stefin B from the family of cystatins as a model protein for folding and amyloid fibril formation studies. We also briefly mention our studies on aggregation of some of the missense EPM1 mutants of stefin B in cells, which mimic additional pathological traits (gain in toxic function) in selected patients with EPM1 disease. We collected data on the reported interactors of stefin B and discuss several hypotheses of possible cytosolic alternative functions.  相似文献   

17.
Human stefin B, from the family of cystatins, is used as a model amyloidogenic protein in studies of the mechanism of amyloid fibril formation and related cytotoxicity. Interaction of the protein's prefibrillar oligomers/aggregates with predominantly acidic phospholipid membranes is known to correlate with cellular toxicity. In the present study, we measured membrane interaction of the prefibrillar and native states for three variants: the Y31 isoform studied previously, the wild-type protein and the G4R mutant; the latter is observed in progressive myoclonus epilepsy of type 1. In addition to using critical pressure and surface plasmon resonance, we assessed membrane permeabilization by calcein release and electrophysiological measurements. It was demonstrated for the first time that wild-type stefin B and the Y31 isoform are able to form pores in planar lipid bilayers, whereas G4R destroys the bilayer by a non pore-forming process. Similarities to other amyloidogenic proteins and the possible physiological implications of our findings are discussed.  相似文献   

18.
Here we present the tetrameric structure of stefin B, which is the result of a process by which two domain-swapped dimers of stefin B are transformed into tetramers. The transformation involves a previously unidentified process of extensive intermolecular contacts, termed hand shaking, which occurs concurrently with trans to cis isomerization of proline 74. This proline residue is widely conserved throughout the cystatin superfamily, a member of which, human cystatin C, is the key protein in cerebral amyloid angiopathy. These results are consistent with the hypothesis that isomerization of proline residues can play a decisive role in amyloidogenesis.  相似文献   

19.
Protein aggregation is central to most neurodegenerative diseases, as shown by familial case studies and by animal models. A modified 'amyloid cascade' hypothesis for Alzheimer's disease states that prefibrillar oligomers, also called amyloid-beta-derived diffusible ligands or globular oligomers, are the responsible toxic agent. It has been proposed that these oligomeric species, as shown for amyloid-beta, beta2-microglobulin or prion fragments, exert toxicity by forming pores in membranes, initiating a cascade of detrimental events for the cell. Interaction of granular aggregates and globular oligomers of an amyloidogenic protein, human stefin B, with model lipid membranes and monolayers was studied. Prefibrillar oligomers/aggregates of stefin B are shown to cause concentration-dependent membrane leaking, in contrast to the homologous stefin A. Prefibrillar oligomers/aggregates of stefin B also increase the surface pressure at an air-water interface, i.e. they have amphipathic character and are surface seeking. In addition, they show stronger interaction with 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] monolayers than native stefin A or nonaggregated stefin B. Prefibrillar aggregates interact predominantly with acidic phospholipids, such as dioleoylphosphatidylglycerol or dipalmitoylphosphatidylserine, as shown by calcein release experiments and surface plasmon resonance. The same preparations are toxic to neuroblastoma cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, again in contrast to the homologue stefin A, which does not aggregate under any of the conditions studied. This study is aimed to contribute to the general model of cellular toxicity induced by prefibrillar oligomers of amyloidogenic proteins, not necessarily involved in pathology.  相似文献   

20.
We used a polyclonal antibody and a mixture of three monoclonal antibodies (MAb), all recognizing the protein core of the small dermatan sulfate proteoglycan (DSPG) (known as PG-II or decorin) derived from human skin fibroblasts, to immunolocalize this molecule in the characteristic lesions in Alzheimer's brain. All antibodies demonstrated positive decorin immunostaining in both the amyloid deposits of neuritic plaques (NPs) and the filamentous structures within neurofibrillary tangles (NFTs). Unlike heparan sulfate proteoglycans (HSPGs), which tend to be evenly distributed throughout NPs containing amyloid fibrils, decorin was primarily localized to the periphery of the spherically shaped amyloid plaques and to the edges of amyloid fibril bundles within the plaque periphery. Decorin was also immunolocalized to the paired helical and straight filaments within NFTs and to collagen fibrils surrounding blood vessels. The unusual distribution of decorin confined to the periphery of amyloid plaques in AD brain suggests that this particular PG may play an important role in the development of the amyloid plaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号