首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
Abstract: In experimental diabetic neuropathy, defective arachidonic acid metabolism characterized by a decrease in the proportion of glycerophospholipid arachidonoyl-containing molecular species (ACMS) occurs and has been implicated in the pathogenesis of the disorder. In this study, we evaluated the suitability of a tumor-derived human Schwann cell line (NF1T) as a model to investigate the mechanism underlying the loss of ACMS. NF1T cells grown in 30 versus 5.5 m M glucose undergo a marked reduction in ACMS in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, in a manner resembling that of diabetic nerve. The depletion of ACMS can be reversed on transferring the cells from 30 m M glucose to medium containing physiological levels of glucose. Cells maintained in 5.5 m M glucose plus 25 m M mannitol or sorbitol did not exhibit decreased ACMS levels, indicating that osmotic effects were not responsible for ACMS depletion. However, growth in 25 m M fructose elicited a reduction of ACMS similar to that produced by 30 m M glucose. Excessive glucose flux through the polyol pathway has been implicated in the neural and vascular abnormalities associated with diabetes. Therefore, we examined the effects of polyol pathway inhibitors, including two aldose reductase inhibitors, zopolrestat and sorbinil, and a sorbitol dehydrogenase inhibitor (SDI), CP166,572, on ACMS levels in NF1T cells cultured in elevated glucose concentrations. At 200 µ M , zopolrestat fully and sorbinil partially corrected ACMS depletion. The SDI at concentrations up to 100 µ M failed to affect diminished ACMS levels. Neither zopolrestat nor the SDI restored ACMS levels reduced in the presence of elevated fructose concentrations. These findings suggest that enhanced flux through the polyol pathway and, in particular, elevated aldose reductase activity may play a significant role in the reduction of ACMS levels in the cells brought about by elevated glucose levels.  相似文献   

2.
3.
We investigated the polyol pathway activity and the gene expression profiles in immortalized adult mouse Schwann cells (IMS32) under normal (5.6 mM) and high (30 and 56 mM) glucose conditions for 7-14 days in culture. Messenger RNA and the protein expression of aldose reductase (AR) and the intracellular sorbitol and fructose contents were up-regulated in IMS32 under high glucose conditions compared with normal glucose conditions. By employing DNA microarray and subsequent RT-PCR/northern blot analyses, we observed significant up-regulation of the mRNA expressions for serum amyloid A3 (SAA3), angiopoietin-like 4 (ANGPTL4) and ecotropic viral integration site 3 (Evi3), and the down-regulation of aldehyde reductase (AKR1A4) mRNA expression in the cells under high glucose (30 mM) conditions. The application of an AR inhibitor, SNK-860, to the high glucose medium ameliorated the increased sorbitol and fructose contents and the reduced AKR1A4 mRNA expression, while it had no effect on mRNA expressions for SAA3, ANGPTL4 or Evi3. Considering that the exposure to the high glucose (>or= 30 mM) conditions mimicking hyperglycaemia in vivo accelerated the polyol pathway in IMS32, but not in other previously reported Schwann cells, the culture system of IMS32 under those conditions may provide novel findings about the polyol pathway-related abnormalities in diabetic neuropathy.  相似文献   

4.
The polyol pathway has been implicated in the process of diabetic cataractogenesis. We report the use of deuterium (2H) spectroscopy for dynamically monitoring the polyol and glycolytic pathways in the single intact rabbit lens. Using 2H labeled C-1 D-glucose, the formation of sorbitol from glucose and the metabolism of sorbitol to fructose was dynamically monitored at 5.5 mM and 35.5 mM glucose concentrations. The accumulation of sorbitol at 35.5 mM glucose concentration was prevented by the inhibition of aldose reductase using an inhibitor (Sorbinil). 2H spectra were obtained in short acquisition times because of the short T1's of deuterated metabolites. A further advantage of 2H spectroscopy is that the natural abundance resonance of water (HDO) can be used as an internal reference standard. These findings confirm previous studies and demonstrate for the first time by NMR spectroscopy activity in the polyol pathway at low glucose concentrations.  相似文献   

5.
The competitive inhibition of fructokinase by glucose has been proposed as the mechanism by which Zymomonas mobilis preferentially consumes glucose from mixtures of glucose and fructose and accumulates fructose when growing on sucrose. In this study, incorporation of radioactive fructose into biomass was used as a measure of fructose catabolism. It was determined that the rate of fructose incorporation by Z. mobilis CP4 was somewhat lower in the presence of an equimolar concentration of glucose but that the inhibition of fructokinase by glucose was not nearly as severe in vivo as was predicted from in vitro studies. Interestingly, addition of glucose to a culture of Z. mobilis CP4-M2, a glucokinaseless mutant, resulted in an immediate and nearly complete inhibition of fructose incorporation. Furthermore, addition of nonmetabolizeable glucose analogs had a similar effect on fructose catabolism by the wild-type Z. mobilis CP4, and fructose uptake by Z. mobilis CP4-M2 was shown to be severely inhibited by equimolar amounts of glucose. These results suggest that competition for fructose transport plays an important role in preferential catabolism of glucose from sugar mixtures. Indeed, the apparent K(infm) values for sugar uptake by Z. mobilis CP4 were approximately 200 mM for fructose and 13 mM for glucose. Other experiments supported the conclusion that a single facilitated diffusion transport system, encoded by the glf gene, is solely responsible for the uptake of both glucose and fructose. The results are discussed with regard to the hypothesis that the kinetics of sugar transport and phosphorylation allow the preferential consumption of glucose and accumulation of fructose, making the fructose available for the enzyme glucose-fructose oxidoreductase, which forms sorbitol, an important osmoprotectant for Z. mobilis when growing in the presence of high sugar concentrations.  相似文献   

6.
Complications common to type I diabetes, such as cataracts and cardiovascular disorders, have been associated with activation of the polyol pathway, which converts glucose to fructose via the intermediate, sorbitol. Under normal glycemic conditions, glucose is typically targeted for glycolysis or the pentose phosphate pathway through phosphorylation by hexokinase. When glucose levels are elevated under diabetic conditions, hexokinase becomes saturated, and the excess glucose is then shunted to aldose reductase, which converts glucose to sorbitol. In the present study, we examined the potential effects of this pathway on the maturation process in mouse oocytes. Increasing concentrations of sorbitol suppressed FSH-induced maturation in oocytes from control mice. Culturing oocytes from diabetic mice in the presence of inhibitors of aldose reductase reversed the suppression of FSH-induced meiotic maturation. When oocytes from control mice were cultured with activators of aldose reductase, FSH-induced maturation was compromised. In addition, treatment with sorbitol or activators of the polyol pathway led to reduced cell-cell communication between the oocyte and the cumulus cells, as well as compromised FSH-mediated cAMP production and de novo purine synthesis. These data indicate that the suppression of FSH-induced meiotic maturation observed in oocytes from diabetic mice may result from a shunting of glucose through the polyol pathway.  相似文献   

7.
Natural-abundance C nuclear magnetic resonance (C-NMR) revealed the production of erythritol and glycerol by nongrowing cells of Leuconostoc oenos metabolizing glucose. The ratio of erythritol to glycerol was strongly influenced by the aeration conditions of the medium. The elucidation of the metabolic pathway responsible for erythritol production was achieved by C-NMR and H-NMR spectroscopy using specifically C-labelled d-glucose. The H-NMR spectrum of the cell supernatant resulting from the metabolism of [2-C]glucose showed that only 75% of the glucose supplied was metabolized heterofermentatively and that the remaining 25% was channelled to the production of erythritol. The synthesis of this polyol resulted from the reduction of the C-4 moiety of the intermediate fructose 6-phosphate. Oxygen has an inhibitory effect on the production of erythritol by L. oenos. Preaeration of a suspension of nongrowing cells of L. oenos resulted in 30% less erythritol and in 70% more glycerol formed during the anaerobic metabolism of glucose. The anaerobic production of erythritol from glucose was also found in growing cultures of L. oenos, although to a smaller extent.  相似文献   

8.
9.
1. A comparative study was carried out on blood glucose partition and glucose metabolism of penguin erythrocytes and somatic tissues. Pygoscelidae penguins (Pygoscelis antarctica and P. papua) were used in these experiments. 2. Blood glucose partition was established by assaying whole blood and plasma glucose in several individuals of the gentoo and chinstrap penguins. 3. It was found that almost all the whole blood sugar is compartmentalized at the plasma site, the red blood cells being ineffective in regard to glucose metabolism. 4. Levels of hexokinase, phosphoglucose isomerase, phosphofructokinase, fructose bisphosphate aldolase, glyceraldehyde phosphate dehydrogenase, phosphoglycerate kinase, phosphopyruvate hydratase (enolase), pyruvate kinase, alpha-glycerolphosphate dehydrogenase and fructose bisphosphate phosphatase were estimated in the erythrocytes of both gentoo and chinstrap penguins, the same determinations being carried out also on the somatic tissues (leg muscle, breast muscle, heart muscle, liver and brain) of the gentoo.  相似文献   

10.
Erythrocytes from different cattle were shown to fall into two distinct groups with respect to fructose transport. The rates of entrance of fructose into the two classes of cells differed by a factor of 5 to 10. It was also found that one pathway, the slower, was susceptible to inhibition by glucose while the other was not. The characteristics of the two fructose transport systems remained constant for as long as a week (longest time studied) upon storage at 2°C. The differences observed could not be attributed to handling of the blood, to the relative glucose permeability, or to the age or sex of the animal. This work indicates that two different fructose transport systems are operating in beef erythrocytes of different individuals.  相似文献   

11.

Background

Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose.

Methods

In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section.

Results

As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups.

Conclusions

These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.  相似文献   

12.
The polyol pathway consists of two enzymes, aldose reductase (AR) and sorbitol dehydrogenase (SDH). There is a growing body of evidence to suggest that acceleration of the polyol pathway is implicated in the pathogenesis of diabetic vascular complications. However, a functional role remains to be elucidated for SDH in the development and progression of diabetic retinopathy. In this study, cultured bovine retinal capillary pericytes were used to investigate the effects of SDH overexpression on glucose toxicity. High glucose modestly increased reactive oxygen species (ROS) generation, decreased DNA synthesis, and up-regulated vascular endothelial growth factor (VEGF) mRNA levels in cultured pericytes. SDH overexpression was found to significantly stimulate ROS generation in high glucose-exposed pericytes and subsequently potentiate the cytopathic effects of glucose. Fidarestat, a newly developed AR inhibitor, and N-acetylcysteine, an antioxidant, completely prevented these deleterious effects of SDH overexpression on pericytes. Furthermore, fidarestat administration was found to significantly prevent vascular hyperpermeability, the characteristic changes of the early phase of diabetic retinopathy, in streptozotocin-induced diabetic rats. Our present results suggest that SDH-mediated conversion of sorbitol to fructose and the resultant ROS generation may play an active role in the pathogenesis of diabetic retinopathy. Blockage of sorbitol formation by fidarestat could be a promising therapeutic strategy for the treatment of early phase of diabetic retinopathy.  相似文献   

13.
Bark samples were removed from 1-year-old stems of Italian prune trees at intervals throughout the growing season (June–August). Glucose, fructose, sucrose, traces of raffinose and a polyol were detected in ethanolic extracts of the bark. The polyol was isolated and shown to be d-glucitol. The use of insoluble polyvinylpyrrolidone proved to be the best method for decolorizing bark extracts prior to quantitative analysis of ethanol-soluble carbohydrates by paper chromato-graphic methods. Glucitol was the major carbohydrate in the bark throughout the season. Sucrose was the major sugar, decreasing gradually as the season advanced. Fructose and glucose were found in lesser and about equal amounts. The amount of glucitol, glucose and fructose was high in June, decreased to a minimum in mid-July, increased sharply in late July and early August and decreased later in the season.  相似文献   

14.
The glucose and fructose degradation pathways were analyzed in the halophilic archaeon Halococcus saccharolyticus by 13C-NMR labeling studies in growing cultures, comparative enzyme measurements and cell suspension experiments. H. saccharolyticus grown on complex media containing glucose or fructose specifically 13C-labeled at C1 and C3, formed acetate and small amounts of lactate. The 13C-labeling patterns, analyzed by 1H- and 13C-NMR, indicated that glucose was degraded via an Entner-Doudoroff (ED) type pathway (100%), whereas fructose was degraded almost completely via an Embden-Meyerhof (EM) type pathway (96%) and only to a small extent (4%) via an ED pathway. Glucose-grown and fructose-grown cells contained all the enzyme activities of the modified versions of the ED and EM pathways recently proposed for halophilic archaea. Glucose-grown cells showed increased activities of the ED enzymes gluconate dehydratase and 2-keto-3-deoxy-gluconate kinase, whereas fructose-grown cells contained higher activities of the key enzymes of a modified EM pathway, ketohexokinase and fructose-1-phosphate kinase. During growth of H. saccharolyticus on media containing both glucose and fructose, diauxic growth kinetics were observed. After complete consumption of glucose, fructose was degraded after a lag phase, in which fructose-1-phosphate kinase activity increased. Suspensions of glucose-grown cells consumed initially only glucose rather than fructose, those of fructose-grown cells degraded fructose rather than glucose. Upon longer incubation times, glucose- and fructose-grown cells also metabolized the alternate hexoses. The data indicate that, in the archaeon H. saccharolyticus, the isomeric hexoses glucose and fructose are degraded via inducible, functionally separated glycolytic pathways: glucose via a modified ED pathway, and fructose via a modified EM pathway.Abbreviations. KDG 2-Keto-3-deoxygluconate - KDPG 2-Keto-3-deoxy-6-phosphogluconate - FBP Fructose-1,6-bisphosphate - TIM Triosephosphate isomerase - GAP Glyceraldehyde-3-phosphate - PEP Phosphoenolpyruvate - PTS Phosphotransferase - 1-PFK Fructose 1-phosphate kinase An erratum to this article can be found at  相似文献   

15.
Summary Glucose metabolism has been studied in Salmo trutta red blood cells. From non-metabolizable analogue (3-O-methyl glucose and l-glucose) uptake experiments it is concluded that there is no counterpart to the membrane transport system for glucose found in mammalian red blood cells. Once within the cells, glucose is directed to CO2 and lactate formation through both the Embden-Meyerhoff and hexose monophosphate shunts; lactate appears as the most important endproduct of glucose metabolism in these cells. From experiments under anaerobic conditions, and in the presence of an inhibitor of pyruvate transfer to mitochondria, most of the CO2 formed appears to derive from the hexose monophosphate pathway. Appreciable O2 consumption has been detected, but there is no clear relationship between this and substrate metabolism. Key enzymes of glucose metabolism hexokinase, fructose-6-phosphate kinase and, probably, pyruvate kinase are out of equilibrium, confirming their regulatory activity in Salmo trutta red blood cells. The presence of isoproterenol, a catecholamine analogue, induces important changes in glucose metabolism under both aerobic and anaerobic conditions, and increases the production of both CO2 and lactate. From the data presented, glucose appears to be the major fuel for Salmo trutta red blood cells, showing a slightly different pattern of glucose metabolism from rainbow trout red blood cells.Abbreviations EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - GOT glutamate oxalacetate transaminase - GPI glucose phosphate isomerase - HK hexokinase - HMS hexose monophosphate shunt - IP isoproterenol - LDH lactate dehydrogenase - MCB modified Cortland buffer - OMG 3-O-methyl glucose - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - TAC tricarboxylic acid cycle  相似文献   

16.
A new deficient glucose 6-phosphate dehydrogenase (G6PD) variant, G6PD Thessaloniki, which was found in the red blood cells of a 70-year-old woman who had idiopathic myelofibrosis, is described. G6PD Thessaloniki had a low Michaelis constant (Km) for G6P (20 microM), high Km for NADP (10.1 microM), normal pH optimum, reduced heat stability, decreased electrophoretic mobility (96-98% of the normal), increased 2-deoxy-G6P and decreased galactose 6-phosphate utilization. Several other enzymatic activities measured in the patient's red blood cells were normal. Studies of red blood cell survival and glucose utilization gave evidence of haemolysis caused by defective glucose utilization by the pentose phosphate pathway. The only son of the patient had normal G6PD in his red blood cells. In an attempt to investigate the origin of G6PD Thessaloniki, heat stability tests of G6PD extracted from the patient's skin have been performed.  相似文献   

17.
Glyceraldehyde induces changes in the flux of glucose oxidised through the hexose monophosphate pathway, the concentrations of intermediates in the Embden-Meyerhoff pathway, the oxidative status of haemoglobin and levels of reduced and oxidised pyridine nucleotides and glutathione in red cells. Glyceraldehyde autoxidises in the cellular incubations, consuming oxygen and producing glyoxalase I- and II-reactive materials. Major fates of glyceraldehyde in red cells appear to be: (i) adduct formation with reduced glutathione and cellular protein; (ii) autoxidation and reaction with oxyhaemoglobin and pyridine nucleotides, and (iii) phosphorylation of d-glyceraldehyde and entry into the glycolytic pathway as glyceraldehyde 3-phosphate. The production of glycerol from glyceraldehyde by red cell l-hexonate dehydrogenase appears not to be a major reaction of glyceraldehyde in red cells. These results indicate that high concentrations of glyceraldehyde (1–50 mM) may induce oxidative stress in red cells by virtue of the spontaneous autoxidation of glyceraldehyde, forming hydrogen peroxide and α-ketoaldehydes (glyoxalase substrates). The implications of glyceraldehyde-induced oxidative stress for the in vitro anti-sickling effect of dl-glyceraldehyde and for the polyol pathway metabolism of glyceraldehyde are discussed.  相似文献   

18.
Glyceraldehyde induces changes in the flux of glucose oxidised through the hexose monophosphate pathway, the concentrations of intermediates in the Embden-Meyerhoff pathway, the oxidative status of haemoglobin and levels of reduced and oxidised pyridine nucleotides and glutathione in red cells. Glyceraldehyde autoxidises in the cellular incubations, consuming oxygen and producing glyoxalase I- and II-reactive materials. Major fates of glyceraldehyde in red cells appear to be: (i) adduct formation with reduced glutathione and cellular protein; (ii) autoxidation and reaction with oxyhaemoglobin and pyridine nucleotides, and (iii) phosphorylation of D-glyceraldehyde and entry into the glycolytic pathway as glyceraldehyde 3-phosphate. The production of glycerol from glyceraldehyde by red cell L-hexonate dehydrogenase appears not to be a major reaction of glyceraldehyde in red cells. These results indicate that high concentrations of glyceraldehyde (1-50 mM) may induce oxidative stress in red cells by virtue of the spontaneous autoxidation of glyceraldehyde, forming hydrogen peroxide and alpha-ketoaldehydes (glyoxalase substrates). The implications of glyceraldehyde-induced oxidative stress for the in vitro anti-sickling effect of DL-glyceraldehyde and for the polyol pathway metabolism of glyceraldehyde are discussed.  相似文献   

19.
In the present study we analysed the effects of S-nitrosocysteine (CysNO) on adult human red blood cell metabolism and observed that metabolic response depended on the degree of cell oxygenation. In particular, glucose metabolised through the pentose phosphate pathway (PPP) was higher in treated erythrocytes than in untreated cells only at high O(2) pressure. Since, following the treatment of intact cells with CysNO, glucose-6-phosphate dehydrogenase (G6PD) and phosphofructokinase (PFK) activities did not evidence any significant alteration, the possibility that the stimulation of PPP was triggered by a CysNO mediated modification of these enzymes was excluded. Intracellular S-nitrosoglutathione (GSNO), detected only in treated red blood cells, may be linked solely to the exposition to the NO donor. A possible rationalisation of the different metabolic behaviour shown by erythrocytes as a function of their oxygenation state is proposed. It takes into account the different route of catabolic degradation observed in vitro for GSNO under aerobic and anaerobic condition.  相似文献   

20.
Culture conditions which lead to the intracellular accumulation of arabitol and mannitol in Geotrichum candidum were investigated. The accumulation of arabitol was dependent on the concentrations of metabolizable hexoses, the non-metabolizable disaccharide sucrose, NaCl and KCl in the growth medium. In media containing 2% (w/v) glucose, fructose or l-sorbose cultures contained only mannitol after 48 h or 72 h growth. In media containing 10% (w/v) to 30% (w/v) glucose, or 25% (w/v) fructose or l-sorbose there was an increase in the total concentration of intracellular polyol due to the accumulation of arabitol. This pentitol was also found to accumulate intracellularly when the organism was grown in medium containing 34% (w/v) sucrose, 0.7 M NaCl or 0.7 M KCl in addition to 2% (w/v) glucose. Under the conditions tested no change in the accumulation of mannitol or ethanol-soluble carbohydrate, believed to be primarily composed of trehalose, was evident.Intracellular polyol was released during incubation of arthrospores obtained from media containing 25% or 10% glucose, in distilled water at 25° C, but no polyol was released under these conditions from arthrospores obtained from growth in 2% glucose medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号