首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of studies on the characterization of the mutation associated with marked unbalanced expression of the mutant X chromosome in a karyotypically normal girl with Hunter disease (mucopolysaccharidosis type II). Southern analysis of DNA extracted from somatic cell hybrids containing only the mutant X chromosome showed deletion of the Xq27.3-q28 loci: DXS297 (VK23AC), DXS293 (VK16), FRAXA (pfxa3), DXS296 (VK21A), and the 3' end of the iduronatesulfatase (IDS) gene. The flanking loci--DXS52 (St14-1), DXS304 (U6.2), and DXS369 (RN1)--were intact. On the basis of these results, we concluded that the mutation was a simple deletion extending a maximum of 3-5 cM to the centromeric side of the IDS gene. Both Southern analysis of DNA from somatic cell hybrids, using short segments of IDS cDNA, and PCR of reverse-transcribed RNA from cultured skin fibroblasts indicated that the telomeric terminus of the deletion was localized to a region near the middle of the coding sequences of the gene.  相似文献   

2.
Genetic mapping of new RFLPs at Xq27-q28.   总被引:15,自引:0,他引:15  
The development of the human gene map in the region of the fragile X mutation (FRAXA) at Xq27 has been hampered by a lack of closely linked polymorphic loci. The polymorphic loci DXS369 (detected by probe RN1), DXS296 (VK21A, VK21C), and DXS304 (U6.2) have recently been mapped to within 5 cM of FRAXA. The order of loci near FRAXA has been defined on the basis of physical mapping studies as cen-F9-DXS105-DXS98-DXS369-DXS297-FRAXA-++ +DXS296-IDS-DXS304-DXS52-qter. The probe VK23B detected HindIII and XmnI restriction fragment length polymorphisms (RFLPs) at DXS297 with heterozygote frequencies of 0.34 and 0.49, respectively. An IDS cDNA probe, pc2S15, detected StuI and TaqI RFLPs at IDS with heterozygote frequencies of 0.50 and 0.08, respectively. Multipoint linkage analysis of these polymorphic loci in normal pedigrees indicated that the locus order was F9-(DXS105, DXS98)-(DXS369, DXS297)-(DXS293,IDS)-DXS304-DXS52. The recombination fractions between adjacent loci were F9-(0.058)-DXS105-(0.039)-DXS98-(0.123)-DXS369-(0.00)- DXS297-(0.057)-DXS296- (0.00)-IDS-(0.012)-DXS304-(0.120)-DXS52. This genetic map will provide the basis for further linkage studies of both the fragile X syndrome and other disorders mapped to Xq27-q28.  相似文献   

3.
Two males with a 46,Y,der(X),t(X;Y)(p22.3;q11) complement were referred independently for evaluation of sterility with azoospermia. Both patients exhibited minimal symptomatology, characterized only by psychological disturbances. Study of X-chromosome breakpoints with pseudoautosomal probes 68B (DXYZ2 elements), 113D (locus DXYS15), and 19B (locus MIC2) indicated in both patients that at least 97% of the X pseudoautosomal sequences are lost. Hybridization with Xp22.3-specific probes DXS283, DXS284, and DXS31 shows that these loci are retained on the rearranged chromosome. Thus, the X-chromosome breakpoints are located close to the proximal boundary of the pseudoautosomal region, between MIC2 and DXS284.  相似文献   

4.
We isolated X-chromosomal DNA probes from a cosmid library constructed from a single human X/hamster hybrid-cell line (C12D). One hundred human clones were isolated and used to construct a pool of X-chromosomal DNA. This DNA was digested into 0.15-2-kb fragments and subcloned into plasmids allowing the rapid characterization of new single-copy probes. These were regionally mapped and used for the detection of restriction-site polymorphisms. Together with a series of subcloned probes from individually isolated cosmids, we found seven polymorphic probes among 53 tested. Thirty-one of the probes were physically localized to different regions of the X chromosome. Four polymorphic probes map to Xq27-Xq28: DXS102 (cX38.1), DXS105(cX55.7), DXS107(cpX234), and DXS134(cpX67). These were genetically mapped by multipoint analysis relative to previously characterized loci, a mapping that resulted in the following order: DXYS1, DXS107, DXS51/DXS102, F9, DXS105, Fra-X, F8/DXS52, DXS15, DXS134. The mapping of DXS105 between F9 and Fra-X makes this probe useful for Fra-X analysis. For the linkage between FraX and DXS105, a maximum lod score of 5.01 at 4 cMorgans has been obtained in one large Dutch pedigree.  相似文献   

5.
A Hispanic girl with Lowe oculocerebrorenal syndrome (OCRL), an X-linked recessive condition characterized by cataracts, glaucoma, mental retardation, and proteinuria, is reported. A balanced X;20 chromosomal translocation with the X chromosome breakpoint at q26.1 was found with high-resolution trypsin-Giemsa banding. Somatic cell hybridization was used to separate the X chromosome derivative and the chromosome 20 derivative in order to position, with respect to the translocation breakpoint, several DNA loci that are linked to the Lowe syndrome locus (Xq24-q26). DXS10 and DXS53 were found to be distal to the breakpoint, whereas DXS37 and DXS42 were located proximal to it. These studies suggest that the OCRL locus lies in the region between these probes. The translocation chromosome originated from an unaffected male without a visible translocation, indicating that the most likely cause of OCRL in this patient is the de novo translocation that disrupted the OCRL locus.  相似文献   

6.
The Xq26-q27 region of the X chromosome is interesting, as an unusually large number of genes and anonymous RFLP probes have been mapped in this area. A number of studies have used classical linkage analysis in families to map this region. Here, we use mutant human T-lymphocyte clones known to be deleted for all or part of the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene, to order anonymous probes known to map to Xq26. Fifty-seven T-cell clones were studied, including 44 derived from in vivo mutation and 13 from in vitro irradiated T-lymphocyte cultures. Twenty anonymous probes (DXS10, DXS11, DXS19, DXS37, DXS42, DXS51, DXS53, DXS59, DXS79, DXS86, DXS92, DXS99, DXS100d, DXS102, DXS107, DXS144, DXS172, DXS174, DXS177, and DNF1) were tested for codeletion with the hprt gene by Southern blotting methods. Five of these probes (DXS10, DXS53, DXS79, DXS86 and DXS177) showed codeletion with hprt in some mutants. The mutants established the following unambiguous ordering of the probes relative to the hprt gene: DXS53-DXS79-5'hprt3'-DXS86-DXS10-DXS177 . The centromere appears to map proximal to DXS53. These mappings order several closely linked but previously unordered probes. In addition, these studies indicate that rather large deletions of the functionally haploid X chromosome can occur while still retaining T-cell viability.  相似文献   

7.
Multilocus analysis of the fragile X syndrome   总被引:10,自引:2,他引:8  
Summary A multilocus analysis of the fragile X (fra(X)) syndrome was conducted with 147 families. Two proximal loci, DXS51 and F9, and two distal loci, DXS52 and DXS15, were studied. Overall, the best multipoint distances were found to be DXS51-F9, 6.9%, F9-fra(X), 22.4%; fra(X)-DXS52, 12.7%; DXS52-DXS15, 2.2%. These distances can be used for multipoint mapping of new probes, carrier testing and counseling of fra(X) families. Consistent with several previous studies, the families as a whole showed genetic heterogeneity for linkage between F9 and fra(X).  相似文献   

8.
The mechanism of profound generalized iduronate sulfatase (IDS) deficiency in a developmentally delayed female with clinical Hunter syndrome was studied. Methylation-sensitive RFLP analysis of DNA from peripheral blood lymphocytes from the patient, using MspI/HpaII digestion and probing with M27 beta, showed that the paternal allele was resistant to HpaII digestion (i.e., was methylated) while the maternal allele was digested (i.e., was hypomethylated), indicating marked imbalance of X-chromosome inactivation in peripheral blood lymphocytes of the patient. Similar studies on DNA from maternal lymphocytes showed random X-chromosome inactivation. Among a total of 40 independent maternal fibroblast clones isolated by dilution plating and analyzed for IDS activity, no IDS- clone was found. Somatic cell hybrid clones containing at least one active human X chromosome were produced by fusion of patient fibroblasts with Hprt- hamster fibroblasts (RJK88) and grown in HAT-ouabain medium. Methylation-sensitive RFLP analysis of DNA from the hybrids showed that of the 22 clones that retained the DXS255 locus (M27 beta), all contained the paternal allele in the methylated (active) form. No clone was isolated containing only the maternal X chromosome, and in no case was the maternal allele hypermethylated. We postulate from these studies that the patient has MPS II as a result of a mutation resulting in both the disruption of the IDS locus on her paternal X chromosome and unbalanced inactivation of the nonmutant maternal X chromosome.  相似文献   

9.
Magnesium-dependent hypocalcaemia (HSH), a rare inherited disease, is caused by selective disorders of magnesium absorption. Both X-linked and autosomal recessive modes of inheritance have been reported for HSH; this suggests a genetically heterogeneous condition. A balanced de novo t(X;9)(p22;q12) translocation has been reported in a female manifesting hypomagnesemia with secondary hypocalcemia. In a lymphoblastoid cell line, derived from this patient, the normal X chromosome is preferentially inactivated, suggesting that the patient's phenotype is caused by disruption of an HSH gene in Xp22. In an attempt to define more precisely the position of the X breakpoint, we have constructed a hybrid cell line retaining the der(X)(Xqter-Xp22.2::9q12-9qter) in the absence of the der(9) and the normal X chromosome. Southern blot analysis of this hybrid and in situ hybridization on metaphase chromosomes have localized the breakpoint between DXS16 and the cluster (DXS207, DXS43), in Xp22.2. Thus, if a gene involved in HSH resides at or near the translocation breakpoint, our findings should greatly facilitate its isolation.  相似文献   

10.
Summary We have isolated an X chromosome probe, St35.691 (DXS305), which detects two RFLPs with TaqI and PstI, whose combined heterozygosity is about 60%. This probe has been assigned to Xq28 by physical and genetic mapping and is very closely linked to DXS52, DXS15, and the coagulation factor VIII gene (F8C). The best estimate of the recombination fraction for the DXS52-DXS305 interval is 0.014, with a lod score of 50.1. Multipoint analysis places DXS305 on the same side of F8C as DXS52, but complete ordering of the three loci was not possible with our present data. This highly informative marker should be useful in the precise mapping of the many disease genes that have been assigned to the Xq28 band.  相似文献   

11.
Ocular albinism of the Nettleship-Falls type (OA1) and X-linked ichthyosis (XI) due to steroid sulfatase (STS) deficiency are cosegregating in three cytogenetically normal half-brothers. The mother has patchy fundal hypopigmentation consistent with random X inactivation in an OA1 carrier. Additional phenotypic abnormalities that have been observed in other STS "deletion syndromes" are not present in this family. STS is entirely deleted on Southern blot in the affected males, but the loci MIC2X, DXS31, DXS143, DXS85, DXS43, DXS9, and DXS41 are not deleted. At least part of DXS278 is retained. Flow cytometric analysis of cultured lymphoblasts from one of the XI/OA1 males and his mother detected a deletion of about 3.5 million bp or about 2% of the X chromosome. Southern blot and RFLP analysis in the XI/OA1 family support the order tel-[STS-OA1-DXS278]-DXS9-DXS41-cen. An unrelated patient with the karyotype 46,X,t(X;Y) (p22;q11) retains the DXS143 locus on the derivative X chromosome but loses DXS278, suggesting that DXS278 is the more distal locus and is close to an XI/OA1 deletion boundary. If a contiguous gene deletion is responsible for the observed XI/OA1 phenotype, it localizes OA1 to the Xp22.3 region.  相似文献   

12.
The loci for steroid sulfatase (STS), the deficiency of which causes X-linked ichthyosis, the cell surface antigen 12E7 (MIC2X), and the blood group antigen Xg (Xg) have been mapped to Xp22.3. These loci are of particular interest since they do not appear to undergo X-chromosome inactivation. In an attempt to establish the relative order of STS and MIC2X, fibroblasts from carriers of four different X/Y translocations and an X/10 translocation were obtained and fused with mouse cell lines deficient in hypoxanthine phosphoribosyltransferase. The breakpoints on the X chromosome in these five translocations are in Xp22. Several independent clones from each fusion were isolated in HAT medium. The clones were examined cytogenetically, and in each case at least two independent clones were identified that have an active X/Y or X/10 translocation chromosome in the absence of other X or Y material. These clones were then tested for STS and 12E7 expression. In two of the X/Y translocations, the markers, STS and 12E7, were both absent. In the X/10 and a third X/Y translocation, both markers were retained. In each of three clones containing the fourth X/Y translocation, STS activity was retained but 12E7 antigenicity was lost. Assuming that this is a simple translocation and does not represent a more complex rearrangement, these results suggest that MIC2X is distal to STS.  相似文献   

13.
We have extended our pulsed-field gel map of the region of the mouse X chromosome homologous to human Xq28 to include the loci Gdx (DXS254Eh), P3 (DXS253Eh), G6pd, Cf-8, and F8a. Gdx, P3, and G6pd are demonstrated to be physically linked to the X-linked visual pigment locus (Rsvp) within a maximal distance of 340 kb, while G6pd and Cf-8 are approximately 900 kb apart. These studies favor a gene order of cen-Rsvp-Gdx-P3-G6pd-(Cf-8)-tel and extend the physical map of this region to 5 million bp. In conjunction with previous physical mapping studies in both mouse and human, the results suggest conserved linkage for loci in this region of the mouse X chromosome and human Xq28. However, employing pulsed-field gel electrophoresis and genetic pedigree analysis of interspecific backcross progeny, we have found close linkage of a clone encoding a mouse homolog for human factor VIII-associated gene A (F8A) to DXPas8, thus revealing the first exception to conserved gene order between murine and human loci in the region.  相似文献   

14.
We have used pulsed field gel electrophoresis for further physical mapping studies in the q27 region of the human X chromosome. We show that the DXS 102 locus and the F9 gene are separated by only 300 kb despite a genetic distance of 1.4 cM; this linkage orients our large-scale map and shows that the mcf.2 transforming sequence is telomeric to F9. A BssHII complete-digest jumping library was used to jump toward the DXS 105 locus; a 130-kb jump was achieved and the corresponding "linking clone" was obtained.  相似文献   

15.
Summary Ten families with nephrogenic diabetes insipidus (NDI) have been analysed for restriction fragment length polymorphisms (RFLPs). A search for linkage was performed using various chromosome-specific single-copy DNA probes of known regional assignment to the human X chromosome. Close linkage was found between the disease locus and the markers DXS52, DXS15, DXS134 and the F8 gene. This result assigns the NDI gene to the subtelomeric region of the long arm of the X chromosome. The regional localization of the gene by the identification of closely linked markers should have repercussions for genetic counselling and prevention in NDI families.  相似文献   

16.
The fragile X syndrome locus, FRAXA, is located at Xq27. Until recently, few polymorphic loci had been genetically mapped close to FRAXA. This has been attributed to an increased frequency of recombination at Xq27, possibly associated with the fragile X mutation. In addition, the frequency of recombination around FRAXA has been reported to vary among fragile X families. These observations suggested that the genetic map at Xq27 in normal populations was different from that in fragile X populations and that the genetic map also varied within the fragile X population. Such variability would reduce the reliability of carrier risk estimates based on DNA studies in fragile X families. Five polymorphic loci have now been mapped to within 4 cM of FRAXA--DXS369, DXS297, DXS296, IDS, and DXS304. The frequency of recombination at Xq26-q28 was evaluated using data at these loci and at more distant loci from 112 families with the fragile X syndrome. Two-point and multipoint linkage analyses failed to detect any difference in the recombination fractions in fragile X versus normal families. Two-point and multipoint tests of linkage homogeneity failed to detect any evidence of linkage heterogeneity in the fragile X families. On the basis of this analysis, genetic maps derived from large samples of normal families and those derived from fragile X families are equally valid as the basis for calculating carrier risk estimates in a particular family.  相似文献   

17.
Summary A total of 14 unrelated German patients with X-linked iduronate-2-sulfatase (IDS) deficiency (Hunter syndrome, MPS II) showing variable clinical manifestations was screened for structural gene aberrations by Southern analysis. Using the IDS cDNA clone c2S15 as a probe, no Southern fragments could be detected in blots in the severely affected patient G-65 with respect to DNA digested by HindIII, PstI and TaqI, suggesting a total loss of the IDS structural gene. In this patient, the flanking loci DXS 297, DXS 296 and DXS 466 were tested. The locus DXS 466 is involved in the deletion, whereas both of the other loci are present. A normal 9.0-kb fragment disappeared and an aberrant fragment of 3.5 kb occurred in the HindIII blot of patient G-117. A normal Southern pattern was found in PstI and TaqI blots of this patient. This result can be interpreted as the generation of an additional HindIII restriction site by point mutation in an IDS gene intron.  相似文献   

18.
注意缺损多动障碍的X染色体基因组扫描分析   总被引:2,自引:0,他引:2  
摘 要:注意缺损多动障碍(ADHD)是儿童期多见行为障碍。男孩发病多于女孩。家系、双生儿和寄养子研究显示该障碍发生具有遗传基础。但是病因尚不清楚。分子遗传学和药理学研究表明ADHD涉及到多巴胺和去甲肾上腺素等神经递质系统,一系列报告发现ADHD与多巴胺D4受体(DRD4)、多巴胺转运体(DAT1)和儿茶酚-O-甲基转移酶(COMT)等基因相关联。我们以往研究表明ADHD与X染色体上DXS7位点和MAOA基因相关联,而DXS7是紧密连锁于MAO基因。依此假设,我们应用基因组扫描技术探讨ADHD在X染色体上易感位点。采用TDT方法分析X染色体上48个DNA标志的多态性与中国人群中84个ADHD核心家系间的连锁关系,ADHD诊断依据DSM-III-R标准。TDT分析结果观察到如下位点与ADHD相连锁,DXS1214(TDT:χ2=18.1,df=7, P<0.01), DXS8102(TDT: χ2=7.9, df=3, P<0.05),DXS1068(TDT: χ2=21.9, df=9, P<0.01), DXS8015(TDT:χ2=14.6, df=7, P<0.05),DXS1059(TDT: χ2=27.8, df=10, P<0.01) 和DXS8088(TDT:χ2=20.4, df=3, P<0.01).研究资料提示X染色体上Xp11.4-Xp21和Xq23区域可能存在ADHD的易感基因。  相似文献   

19.
We have studied 10 families with sexual aneuploidy by means of recombinant DNA techniques. The X linked probes were F814 (DXS52), FIX (FVIII gene), pert 87.15 (DXS164), L754 (DXS84) and 47Z (DXYS5). The observed banding patterns allowed us to determine the parental origin of such aneuploidy in nine of our cases. It was paternal in seven cases and maternal in two.  相似文献   

20.
The search for the gene for choroideremia (MIM 30310), a rare retinal dystrophy, has been of great interest due to the existence of several choroideremia patients with well-defined structural chromosome aberrations, thus providing the basis for a reverse genetics approach to the isolation of this disease gene. This report details our molecular studies of a woman with choroideremia and a de novo X; 13 translocation. Pulsed-field gel electrophoresis using a contour-clamped homogeneous electric field apparatus has allowed detection of the translocation breakpoint with the anonymous DNA marker p1bD5 (DXS165) and the mapping of this probe to within 120 kb of the breakpoint. In addition, we have used this probe to isolate a clone (pCH4) from a 100-kb jumping library which has crossed a rare-cutting restriction site (XhoI) between DXS165 and the choroideremia gene and detects the translocation breakpoint using this enzyme. Although DXS165 lies within 120 kb of the breakpoint and Cremers et al. (1987, Clin. Genet. 32: 421-423; 1989, PNAS 86: 7510-7514) have detected deletions of DXS165 in 3 of 30 choroideremia probands, we have detected no deletions of this marker or of pCH4 in 42 unrelated probands with this retinal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号