首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The composition of the mitochondrial DNA (mtDNA) of the fin whale,Balaenoptera physalus, was determined. The length of the molecule is 16,398 bp, and its organization conforms with that of other mammals. The general similarity between the mtDNA of the fin whale and the cow is greater than the similarity between the fin whale and other species (human, mouse, rat) in which the composition of the entire molecule has been described. The D-loop region of the mtDNA of the fin whale is 81% identical to the D-loop of dolphin DNA, and the central portion of the D-loop is similar to the bovine D-loop. The accumulation of transversions and gaps in the 12S and 16S rRNA genes was assessed by comparing the fin whale, cow, and human. The sequence difference between human and the whale and human and the cow was at the same level, indicating that the rate of evolution of the mtDNA rRNA genes is about the same in artiodactyls and cetaceans. In the 12S rRNA gene an accumulation rate of 0.05% per million years places the separation of cetaceans and artiodactyls at about 55 million years ago. The corresponding figure for human and either the whale or the cow is about 80 million years. In the 16S rRNA gene a 0.08% accumulation rate of transversions and gaps per million years yields concurring figures. A comparison between the cytochromeb gene of the fin whale and cytochromeb sequences in the literature, including dolphin (Stenella) sequences, identified the cetaceans as monophyletic and the artiodactyls as their closest relatives. The comparison between the cytochromeb sequences of the fin whale andStenella showed that differences in codon positions one or two were frequently associated with a change in another codon position.  相似文献   

3.
4.
Mammalian mitochondria contain their own approximately 16.5 kb circular genome. Mitochondrial DNA (mtDNA) encodes for a subset of the proteins involved in the electron transport chain and depletion or mutation of the sequence is implicated in a number of human disease processes. The recent finding is that mitochondrial damage mediates genotoxicity after exposure to chemical carcinogens has focused attention on the role of mtDNA mutations in the development of cancer. Although the entire genome has been sequenced for a number of mammals, only a small fraction of the mtDNA sequence is available for hamsters. We have obtained here the entire 16,284 bp sequence of the Chinese hamster mitochondrial genome, which will enable detailed analysis of mtDNA mutations caused by exposure to mutagens in hamster-derived cell lines.  相似文献   

5.
The complete nucleotide sequence of the mitochondrial DNA of the rainbow trout, Onchorynchus mykiss, has been determined. The total length of the molecule is 16,660 bp. The rainbow trout mitochondrial DNA has the same organization described in eutherian mammals, the clawed frog (Xenopus laevis), and the two fish species, Oriental stream loach (Crossotoma lacustre) and carp (Cyprinus carpio). Alignment and comparison of the deduced amino acid sequences of the 13 proteins encoded by rainbow trout and other vertebrate mitochondrial genomes allowed us to estimate that COI is the most conserved mitochondrial subunit (amino acid identity ranging from 85.6% to 94.8%) whereas ATPase 8 is the most variable one (amino acid identity ranging from 30.8% to 70.4%). Putative secondary structures for the 22 tRNAs found in the molecule are given along with an extensive comparison of tRNA sequences among representative species of each major group of vertebrates. In this sense, an unusual cloverleaf structure for the tRNASer(AGY) is proposed. A stem-loop structure inferred for the origin of the L-strand replication (OL) and the presence of a large polycytidine tract in the OL loop is described. The existence of this stretch instead of the usual T-rich sequence reported so far in mammal mtDNAs is explained in terms of a less-strict template dependence of the RNA primase involved in the initiation of L-strand replication. Correspondence to: J.M. Bautista  相似文献   

6.
Inconsistencies between phylogenetic interpretations obtained from independent sources of molecular data occasionally hamper the recovery of the true evolutionary history of certain taxa. One prominent example concerns the primate infraordinal relationships. Phylogenetic analyses based on nuclear DNA sequences traditionally represent Tarsius as a sister group to anthropoids. In contrast, mitochondrial DNA (mtDNA) data only marginally support this affiliation or even exclude Tarsius from primates. Two possible scenarios might cause this conflict: a period of adaptive molecular evolution or a shift in the nucleotide composition of higher primate mtDNAs through directional mutation pressure. To test these options, the entire mt genome of Tarsius bancanus was sequenced and compared with mtDNA of representatives of all major primate groups and mammals. Phylogenetic reconstructions at both the amino acid (AA) and DNA level of the protein-coding genes led to faulty tree topologies depending on the algorithms used for reconstruction. We propose that these artifactual affiliations rather reflect the nucleotide compositional similarity than phylogenetic relatedness and favor the directional mutation pressure hypothesis because: (1) the overall nucleotide composition changes dramatically on the lineage leading to higher primates at both silent and nonsilent sites, and (2) a highly significant correlation exists between codon usage and the nucleotide composition at the third, silent codon position. Comparisons of mt genes with mt pseudogenes that presumably transferred to the nucleus before the directional mutation pressure took place indicate that the ancestral DNA composition is retained in the relatively fossilized mtDNA-like sequences, and that the directed acceleration of the substitution rate in higher primates is restricted to mtDNA.  相似文献   

7.
The fresh water pufferfish Tetraodon nigroviridis is a model organism for studying evolution of genome and gene functions, but its mitochondrial genome (mtDNA) sequence is still not available. We determined the complete nucleotide sequence of its mtDNA using shotgun sequencing. The T. nigroviridis mtDNA was 16,462 bp, and contained 13 protein coding genes, 22 tRNAs, 2 rRNAs and a major non-coding region. The gene order was identical to the common type of vertebrate mtDNA, whereas the G + C content in the sense strand was 46.9%, much higher than most other fish species. One hundred and three SNPs were detected in the control region of the mtDNA of 35 individuals, a majority of SNPs were detected in the 5' end of the control region. A phylogenetic study including 21 fish species was performed on concatenated amino acid sequences of 12 protein coding genes, and revealed that the T. nigroviridis was clustered with Fugu rubripes into a group. The complete mtDNA sequence and SNPs in its control region will be useful in studying fish evolution, in differentiating different Tetraodon species and in analyzing genetic diversity within T. nigroviridis.  相似文献   

8.
The complete mitochondrial DNA (mtDNA) sequence of the brine shrimp Artemia franciscana has been determined. It extends the present knowledge of mitochondrial genomes to the crustacean class and supplies molecular markers for future comparative studies in this large branch of the arthropod phylum. Artemia mtDNA is 15,822 nucleotides long, and when compared with its Drosophila counterpart, it shows very few gene rearrangements, merely affecting two tRNAs placed 3 downstream of the ND 2 gene. In this position a stem-loop secondary structure with characteristics similar to the vertebrate mtDNA L-strand origin of replication is found. This suggests that, associated with tRNA changes, the diversification of the mitochondrial genome from an ancestor common to crustacea and insects could be explained by errors in the mtDNA replication process. Although the gene content is the same as in most animal mtDNAs, the sizes of the protein coding genes are in some cases considerably smaller. Artemia mtDNA uses the same genetic code as found in insects, ATN and GTG are used as initiation codons, and several genes end in incomplete T or TA codons.Correspondence to: R. Garesse  相似文献   

9.
10.
The complete sequence of the mitochondrial DNA (mtDNA) of the true slime mold Physarun polycephalum has been determined. The mtDNA is a circular 62,862-bp molecule with an A+T content of 74.1%. A search with the program BLAST X identified the protein-coding regions. The mitochondrial genome of P. polycephalum was predicted to contain genes coding for 12 known proteins [for three cytochrome c oxidase subunits, apocytochrome b, two F1Fo-ATPase subunits, five NADH dehydrogenase (nad) subunits, and one ribosomal protein], two rRNA genes, and five tRNA genes. However, the predicted ORFs are not all in the same frame, because mitochondrial RNA in P. polycephalum undergoes RNA editing to produce functional RNAs. The nucleotide sequence of an nad7 cDNA showed that 51 nucleotides were inserted at 46 sites in the mRNA. No guide RNA-like sequences were observed in the mtDNA of P. polycephalum. Comparison with reported Physarum mtDNA sequences suggested that sites of RNA editing vary among strains. In the Physarum mtDNA, 20 ORFs of over 300 nucleotides were found and ORFs 14 19 are transcribed.  相似文献   

11.
We determined the complete 14,985-nt sequence of the mitochondrial DNA of the horseshoe crab Limulus polyphemus (Arthropoda: Xiphosura). This mtDNA encodes the 13 protein, 2 rRNA, and 22 tRNA genes typical for metazoans. The arrangement of these genes and about half of the sequence was reported previously; however, the sequence contained a large number of errors, which are corrected here. The two strands of Limulus mtDNA have significantly different nucleotide compositions. The strand encoding most mitochondrial proteins has 1. 25 times as many A's as T's and 2.33 times as many C's as G's. This nucleotide bias correlates with the biases in amino acid content and synonymous codon usage in proteins encoded by different strands and with the number of non-Watson-Crick base pairs in the stem regions of encoded tRNAs. The sizes of most mitochondrial protein genes in Limulus are either identical to or slightly smaller than those of their Drosophila counterparts. The usage of the initiation and termination codons in these genes seems to follow patterns that are conserved among most arthropod and some other metazoan mitochondrial genomes. The noncoding region of Limulus mtDNA contains a potential stem-loop structure, and we found a similar structure in the noncoding region of the published mtDNA of the prostriate tick Ixodes hexagonus. A simulation study was designed to evaluate the significance of these secondary structures; it revealed that they are statistically significant. No significant, comparable structure can be identified for the metastriate ticks Rhipicephalus sanguineus and Boophilus microplus. The latter two animals also share a mitochondrial gene rearrangement and an unusual structure of mt-tRNA(C) that is exactly the same association of changes as previously reported for a group of lizards. This suggests that the changes observed are not independent and that the stem-loop structure found in the noncoding regions of Limulus and Ixodes mtDNA may play the same role as that between trnN and trnC in vertebrates, i.e., the role of lagging strand origin of replication.  相似文献   

12.
Intravenous infusion of angiotensin II ([Asn1 Val5]‐Ang II) at 10?9 mol min?1 kg?1 body mass produced a significant antidiuresis in river lamprey Lampetra fluviatilis, captured during upstream migration and maintained in fresh water. Although the renin‐angiotensin hormonal system (RAS) is now recognized in jawless fishes, until this study, the role of homologous Ang II in L. fluviatilis kidney function had not been examined. This study provides the first evidence for an antidiuretic action of Ang II in cyclostomes and, in evolutionary terms, suggests a renal function for the RAS in early vertebrates.  相似文献   

13.
The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina   总被引:3,自引:0,他引:3  
Summary The nucleotide sequence of the mitochondrial DNA (mtDNA) of the harbor seal, Phoca vitulina, was determined. The total length of the molecule was 16,826 bp. The organization of the coding regions of the molecule conforms with that of other mammals, but the control region is unusually long. A considerable portion of the control region is made up of short repeats with the motif GTACAC particularly frequent. The two rRNA genes and the 13 peptide-coding genes of the harbor seal, fin whale, cow, human, mouse, and rat were compared and the relationships between the different species assessed. At ordinal level the 12S rRNA gene and 7 out of the 13 peptide-coding genes yielded a congruent topological tree of the mtDNA relationship between the seal, cow, whale, human, and the rodents. In this tree the whale and the cow join first, and this clade is most closely related to the seal.Offprint requests to: Ú. Árnason  相似文献   

14.
15.
16.
? Premise of the study: The Malpighiaceae include ~1300 tropical flowering plant species in which generic definitions and intergeneric relationships have long been problematic. The goals of our study were to resolve relationships among the 11 generic segregates from the New World genus Mascagnia, test the monophyly of the largest remaining Malpighiaceae genera, and clarify the placement of Old World Malpighiaceae. ? Methods: We combined DNA sequence data for four genes (plastid ndhF, matK, and rbcL and nuclear PHYC) from 338 ingroup accessions that represented all 77 currently recognized genera with morphological data from 144 ingroup species to produce a complete generic phylogeny of the family. ? Key results and conclusions: The genera are distributed among 14 mostly well-supported clades. The interrelationships of these major subclades have strong support, except for the clade comprising the wing-fruited genera (i.e., the malpighioid+Amorimia, Ectopopterys, hiraeoid, stigmaphylloid, and tetrapteroid clades). These results resolve numerous systematic problems, while others have emerged and constitute opportunities for future study. Malpighiaceae migrated from the New to Old World nine times, with two of those migrants being very recent arrivals from the New World. The seven other Old World clades dispersed much earlier, likely during the Tertiary. Comparison of floral morphology in Old World Malpighiaceae with their closest New World relatives suggests that morphological stasis in the New World likely results from selection by neotropical oil-bee pollinators and that the morphological diversity found in Old World flowers has evolved following their release from selection by those bees.  相似文献   

17.
The 13,738 bp mitochondrial DNA from the cestode Echinococcus multilocularis has been sequenced. It contains two major noncoding regions and 36 genes (12 for proteins involved in oxidative phosphorylation, two for rRNAs and 22 for tRNAs) but a gene for ATPase subunit 8 is missing. All genes are transcribed in the same direction. Putative secondary structures of tRNAs indicate that most of them are conventional clover leaves but the dihydrouridine arm is unpaired in tRNA(Ser(AGN)), tRNA(Ser(UCN)), tRNA(Arg) and tRNA(Cys). The base composition at the wobble positions of fourfold degenerate codon families is highly biased toward U and against C.  相似文献   

18.
Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and rps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. Hagemann  相似文献   

19.
The complete sequence of the Atlantic salmon (Salmo salar) mitochondrial genome has been determined. The entire sequence is 16665 base pairs (bp) in length, with a gene content (13 protein-coding, two ribosomal RNA [rRNA] and 22 transfer RNA [tRNA] genes) and order conforming to that observed in most other vertebrates. Base composition and codon usage have been detailed. Nucleotide and derived amino acid sequences of the 13 protein-coding genes from Atlantic salmon have been compared with their counterparts in rainbow trout. A putative structure for the origin of L-strand replication (O(L)) is proposed, and sequence features of the control region (D-loop) are described.  相似文献   

20.
A remarkable trend in the evolution of lampreys is the occurrence in most genera of 'paired species', in which the parasitic anadromous lampreys are believed to have given rise to nonparasitic freshwater resident populations. The present work examines the phylogeography of the European paired species Lampetra fluviatilis and Lampetra planeri, in an attempt to elucidate species pair evolutionary history. We studied sequence variation in cytochrome b and ATPase 6, 8 mitochondrial genes in 63 individuals from 21 localities of the paired species throughout their distribution range. Results from the phylogenetic and nested clade analyses were largely consistent, suggesting the existence of three major evolutionary lineages: lineage I and possibly lineage II are widespread throughout Europe, while the most ancestral lineage III is apparently restricted to the Iberian Peninsula. The high genetic diversity observed in the Iberian Peninsula is probably the result of refugial persistence and subsequent accumulation of variation over several ice ages, whereas the low levels of genetic diversity observed in central and northern Europe should reflect a rapid postglacial colonization. Results suggest that L. planeri originated within at least two distinct evolutionary lineages, rejecting the single origin hypothesis. The observed lack of taxa monophyly within lineage I may be the result of ongoing gene flow if the two taxa are alternate life-history forms of a single species. However, structure within lineage I is also consistent with the hypothesis of divergence of taxa after postglacial dispersion (around 2000 generations ago) with incomplete lineage sorting. Further testing of the alternative hypotheses is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号