首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogenetic position of cyclostomes, i.e., the relationships between hagfishes, lampreys, and jawed vertebrates is an unresolved problem. Anatomical data support the paraphyly of cyclostomes, whereas nuclear genes data support monophyly of cyclostomes. Previous results obtained using mitochondrial DNA are ambiguous, presumably due to a lack of informative sequences. By adding the complete mtDNA of a hagfish, Eptatretus burgeri, we have generated a novel data set for sequences of hagfishes and of lampreys. The addition of this mtDNA sequence to the 12 taxa we have already used becomes sufficient to obtain unambiguous results. This data set, which includes sequences of mtDNA of animals closely related to the lamprey/hagfish node, was used in a phylogenetic analysis with two independent statistical approaches and unequivocally supported the monophyly of cyclostomes. Thus molecular data, i.e., our results and those obtained using nuclear genes, conclude that hagfishes and lampreys form a clade.  相似文献   

2.
J Freitag  A Beck  G Ludwig  L von Buchholtz  H Breer 《Gene》1999,226(2):165-174
In vertebrates, recognition of odorous compounds is based on a large repertoire of receptor subtypes encoded by a multigene family. Towards an understanding of the phylogenetic origin of the vertebrate olfactory receptor family, attempts have been made to identify related receptor genes in the river lampreys (Lampetra fluviatilis), which are descendants of the earliest craniates and living representatives of the most ancient vertebrates. Employing molecular cloning approaches led to the discovery of four genes encoding heptahelical receptors, which share only a rather low overall sequence identity but several of the characteristic structural hallmarks with vertebrate olfactory receptors. Furthermore, in situ hybridization studies demonstrated that the identified genes are expressed in chemosensory cells of the singular lamprey olfactory organ. Molecular phylogenetic analysis confirmed a close relationship of the lamprey receptors to vertebrate olfactory receptors and in addition demonstrated that olfactory genes of the agnathostomes diverged from the gnathostome receptor genes before those split into class I and class II receptors. The data indicate that the lamprey receptors represent the most ancient family of the hitherto identified vertebrate olfactory receptors.  相似文献   

3.
The phylogenetic position of hagfishes in vertebrate evolution is currently controversial. The 18S and 28S rRNA trees support the monophyly of hagfishes and lampreys. In contrast, the mitochondrial DNAs suggest the close association of lampreys and gnathostomes. To clarify this controversial issue, we have conducted cloning and sequencing of the four nuclear DNA–coded single-copy genes encoding the triose phosphate isomerase, calreticulin, and the largest subunit of RNA polymerase II and III. Based on these proteins, together with the Mn superoxide dismutase for which hagfish and lamprey sequences are available in database, phylogenetic trees have been inferred by the maximum likelihood (ML) method of protein phylogeny. It was shown that all the five proteins prefer the monophyletic tree of cyclostomes, and the total log-likelihood of the five proteins significantly supports the cyclostome monophyly at the level of ±1 SE. The ML trees of aldolase family comprising three nonallelic isoforms and the complement component group comprising C3, C4, and C5, both of which diverged during vertebrate evolution by gene duplications, also suggest the cyclostome monophyly. Received: 28 April 1999 / Accepted: 30 June 1999  相似文献   

4.
The vertebrates are traditionally classified into two distinct groups, Agnatha (jawless vertebrates) and Gnathostomata (jawed vertebrates). Extant agnathans are represented by hagfishes (Myxiniformes) and lampreys (Petromyzontiformes), frequently grouped together within the Cyclostomata. Whereas the recognition of the Gnathostomata as a clade is commonly acknowledged, a consensus has not been reached regarding whether or not Cyclostomata represents a clade. In the present study we have used newly established sequences of the protein-coding genes of the mitochondrial DNA molecule of the hagfish to explore agnathan and gnathostome relationships. The phylogenetic analysis of Pisces, using echinoderms as outgroup, placed the hagfish as a sister group of Vertebrata sensu stricto, i.e., the lamprey and the gnathostomes. The phylogenetic analysis of the Gnathostomata identified a basal divergence between gnathostome fishes and a branch leading to birds and mammals, i.e., between ``Anamnia' and Amniota. The lungfish has a basal position among gnathostome fishes with the teleosts as the most recently evolving lineage. The findings portray a hitherto unrecognized polarity in the evolution of bony fishes. The presently established relationships are incompatible with previous molecular studies. Received: 15 August 1997 / Accepted: 1 October 1997  相似文献   

5.
In 1806, a hypothesis in which hagfishes and lampreys were classified as the taxon Cyclostomi was proposed on the basis of shared morphological traits. That ‘monophyletic cyclostome’ classification prevailed into the twentieth century and has persisted until the present. In 1958, a study involving coordinate grid transformations to analyse head ontogenies for living and fossil craniates was published. Results obtained in that evolutionary–developmental analysis revealed that extant hagfishes and extinct heterostracans developed substantially differently from closely related extant and extinct agnathans and warranted recognition as a distinct lineage. In 1977, a classification in which lampreys and jawed vertebrates formed a group exclusively from hagfishes was proposed on the basis of neontological, morphological and molecular traits. This ‘paraphyletic cyclostome’ classification garnered acceptance among some taxonomists and has persisted alongside the monophyletic cyclostome classification until the present. We applied geometric morphometrics to data obtained from the 1958 evolutionary–developmental analysis, to objectively test and confirm these overlooked and underappreciated results. We demonstrated that the paraphyletic cyclostome classification was conceived at least 19 years earlier than usually acknowledged. Our reanalysis emphasises that the debate on whether the Cyclostomata is monophyletic or paraphyletic must be resolved formally on the basis of principles and practices for phylogenetic systematic analysis including fossil data.  相似文献   

6.
Extant vertebrates are divided into the two major groups, cyclostomes and gnathostomes (jawed vertebrates). The former includes jawless fishes, hagfishes and lampreys, and the latter includes all extant jawed vertebrates. In many research fields, the phenotypic traits of the cyclostomes have been considered crucial in understanding the evolutionary process from invertebrates to vertebrates. Recent studies have suggested that the common ancestor of the extant vertebrates including hagfishes and lampreys underwent two-round of whole genome duplications, and thus the genome expansion solely does not account for phenotypic differences between cyclostomes and gnathostomes. Emerging evidence from molecular phylogeny of individual gene families indicates that the gene repertoire expanded at the common ancestor of vertebrates were later reshaped asymmetrically between the two lineages, resulting in the retention of differential gene sets. This also confuses interpretation of conserved synteny which often serves as indicator of orthology and the ploidy level. In this review, current controversy and future perspectives of cyclostome genomics are discussed with reference to evolutionary developmental biology.  相似文献   

7.
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.  相似文献   

8.
It has become clear that the extant vertebrates are divided into three major groups, that is, hagfishes, lampreys, and jawed vertebrates.Morphological and molecular studies, however, have resulted in conflicting views with regard m their interrelationships. To clarify the phylogenetic relationships between them, 48 orthologous protein-coding gene families were analyzed. Even as the analysis of 34 nuclear gene families supported the monophyly of cyclostomes, the analysis of 14 mitochondrial gene families suggested a closer relationship between lampreys and gnathostomes compared to hagfishes. Lampreys were sister group of gnathostomes. The results of this study sup-ported the eyclostomes. Choice of outgroup, tree-making methods, and software may affect the phylogenetic prediction, which may have caused much debate over the subject. Development of new methods for tackling such problems is still necessary.  相似文献   

9.
Living vertebrate diversity comprises hagfishes and lampreys (Cyclostomata), elasmobranchs and holocephalans (Chondrichthyes), and bony fish which include tetrapods (Osteichthyes). Based on dissections and an extensive comparative analysis, we provide an updated overview of the anatomy, homologies and evolution of cyclostome and chondrichthyan cephalic muscles, with osteichthyans as primary comparative taxa. The analysis also infers plesiomorphic conditions for vertebrates and gnathostomes. We follow a uniform myological terminology for the Gnathostomata to demonstrate that the last common ancestor of extant vertebrates probably had a single intermandibularis and other mandibular muscles (labial muscles), some constrictores hyoidei and branchiales, and epibranchial and hypobranchial muscle sheets. The division of the cucullaris into levatores arcuum branchialium and protractor pectoralis is an osteichthyan synapomorphy and reflects an evolutionary trend towards a greater separation between the head and pectoral girdle that culminated in the formation of the tetrapod neck. Hence, this paper addresses a long‐standing, central issue regarding vertebrate comparative anatomy. It thus provides a valuable basis for future evolutionary, developmental and functional studies of vertebrates and/or of specific vertebrate subgroups/model organisms. © 2014 The Linnean Society of London  相似文献   

10.
Extant vertebrates are divided into three major groups: hagfishes (Hyperotreti, myxinoids), lampreys (Hyperoartia, petromyzontids), and jawed vertebrates (Gnathostomata). The phylogenetic relationships among the groups and within the jawed vertebrates are controversial, for both morphological and molecular studies have rendered themselves to conflicting interpretations. Here, we use the sequences of 35 nuclear protein-encoding genes to provide definitive evidence for the monophyly of the Agnatha (jawless vertebrates, a group encompassing the hagfishes and lampreys). Our analyses also give a strong support for the separation of Chondrichthyes (cartilaginous fishes) before the divergence of Osteichthyes (bony fishes) from the other gnathostomes.  相似文献   

11.
This is an expanded study of the relationships among the deuterostome animals based on combined, nearly complete 28S and 18S rRNA genes (>3925 nt.). It adds sequences from 20 more taxa to the approximately 45 sequences used in past studies. Seven of the new taxa were sequenced here (brittle star Ophiomyxa, lizard Anolis, turtle Chrysemys, sixgill shark Hexanchus, electric ray Narcine, Southern Hemisphere lamprey Geotria, and Atlantic hagfish Myxine for 28S), and the other 13 were from GenBank and the literature (from a chicken, dog, rat, human, three lungfishes, and several ray-finned fishes, or Actinopterygii). As before, our alignments were based on secondary structure but did not account for base pairing in the stems of rRNA. The new findings, derived from likelihood-based tree-reconstruction methods and by testing hypotheses with parametric bootstrapping, include: (1) brittle star joins with sea star in the echinoderm clade, Asterozoa; (2) with two hagfishes and two lampreys now available, the cyclostome (jawless) fishes remain monophyletic; (3) Hexanchiform sharks are monophyletic, as Hexanchus groups with the frilled shark, Chlamydoselachus; (4) turtle is the sister taxon of all other amniotes; (5) bird is closer to the lizard than to the mammals; (6) the bichir Polypterus is in a monophyletic Actinopterygii; (7) Zebrafish Danio is the sister taxon of the other two teleosts we examined (trout and perch); (8) the South American and African lungfishes group together to the exclusion of the Australian lungfish. Other findings either upheld those of the previous rRNA-based studies (e.g., echinoderms and hemichordates group as Ambulacraria; orbitostylic sharks; batoids are not derived from any living lineage of sharks) or were obvious (monophyly of mammals, gnathostomes, vertebrates, echinoderms, etc.). Despite all these findings, the rRNA data still fail to resolve the relations among the major groups of deuterostomes (tunicates, Ambulacraria, cephalochordates and vertebrates) and of gnathostomes (chondrichthyans, lungfishes, coelacanth, actinopterygians, amphibians, and amniotes), partly because tunicates and lungfishes are rogue taxa that disrupt the tree. Nonetheless, parametric bootstrapping showed our RNA-gene data are only consistent with these dominant hypotheses: (1) deuterostomes consist of Ambulacraria plus Chordata, with Chordata consisting of tunicates and 'vertebrates plus cephalochordates'; and (2) lungfishes are the closest living relatives of tetrapods.  相似文献   

12.
Lamprey, the living jawless vertebrate, has been regarded as one of the most primitive groups of vertebrates. The evolutionary phylogenetic position of the lamprey promises to provide hints about the origin of the vertebrate genome as well as the origin of the body plan, a part of which may be written in the genome. Since the lamprey split from the gnathostome lineage early in the history of vertebrates, the shared developmental mechanisms in lampreys and gnathostomes can be regarded as possessed by the hypothetical common ancestor of these animals, whereas the gnathostome-specific developmental mechanisms that are absent from lampreys indicate that they are relatively new, added to the developmental program only after the split of gnathostomes. Thus, the sequential establishment of the gnathostome body plan is inherently related to the history of genomic duplication events. In this review, recent molecular developmental and evolutionary molecular research on the living lampreys are summarized and discussed, taking vertebrate comparative morphology and embryology into consideration.  相似文献   

13.
Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these ‘living fossils’, we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.  相似文献   

14.
Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology.  相似文献   

15.
Summary Immunoreactive fibronectin-like material was localized within tissues of agnathans (hagfishes and lampreys) by an immunoperoxidase technique. Fibronectin was detected in basement membranes and in loose and dense connective tissues throughout the agnathan body. A fibronectin-like component was also identified in the plasma of both lampreys and hagfishes. The results indicate that fibronectin or a fibronectin-like material is a major component of agnathan connective tissues. Although there were some variations in the localization of fibronectin both between the lamprey and the hagfish and between agnathan and other vertebrate tissues, the generalized pattern of distribution of fibronectin in the agnathans supports the view that this protein, like that in higher vertebrates, plays a role in cellmatrix adhesion and tissue organization.  相似文献   

16.
Lampreys belong to the class of Cyclostomata; practically no evolution of these Vertebrates can be noted since Paleozo?c times; lampreys thus appear as a choice material for studying several problems in the field of biochemical evolution. Several monomeric haemoglobins can be characterized in the erythrocytes of the sea lamprey (Petromyzon marinus). The major constituent was isolated by chromatography, and submitted to tryptic digestion; soluble tryptic peptides were separated by gel filtration into 5 fractions; the peptides of each fraction were isolated either by Dowex-50 chromatography or by HPLC; the insoluble core was oxidized and submitted to HPLC fractionation. The primary structure of the whole chain and of the purified tryptic peptides was determined using automatic sequencing; alignment of the peptides was achieved by homology with the previously established covalent structure of the globin of Lampetra fluviatilis. The sequence we established confirms the crystallographic data of Hendrickson and Love. Globin/haem contacts are discussed; a tentative explanation of the absence of tetramerization can be proposed after comparison with the aminoacid residues involved in alpha 1 beta 1 and alpha 1 beta 2 contacts. Petromyzon globin differs at three locations (Thr/Ser3, Leu/Met58, Thr/Ser60) from Lampetra fluviatilis globin. The monomeric chain of another Cyclostomata Myxine glutinosa, differs more considerably (88 residues). Our results corroborate recent paleontologic data which favour the separation of lampreys from hagfishes; Cyclostomata cannot be considered as a monophylic group. Finally, there is a closer relation between lamprey globin and alpha chains than between this monomeric globin and beta chains, and furthermore apomyoglobins of higher vertebrates.  相似文献   

17.
The extant jawless fishes (Agnatha) include the hagfishes andlampreys whose ancestry can be traced through a conserved evolutionto the earliest of vertebrates. This review traces the studyof the enteropancreatic (EP), endocrine cells and their productsin hagfishes and lampreys over the past two centuries. ErikaPlisetskaya is one of several prominent comparative endocrinologistswho studied the development, distribution or function of theagnathan EP system. Her physiological studies in Russia laidthe foundation for her subsequent isolation in North Americaof the first lamprey EP peptides (insulin and somatostatin)and providing the first homologous radioimmunoassay for agnathan(lamprey) insulin. This review also emphasizes the nature andthe method of development of the agnathan endocrine pancreas(islet organ), for it reflects the earliest vertebrate endocrinepancreas originating from intestinal and/or bile-duct epithelia.The lamprey life cycle includes a protracted larval period anda metamorphosis when the adult EP system develops. Differencesin morphogenesis during metamorphosis of southern- and northern-hemispherelampreys dictate that a single cranial mass (islet organ) appearin the former and both a cranial and a caudal principal isletcomprises most of the islet organ in holarctic species. Thereare differences in distribution of cell types and in the primarystructure of the peptides in the definitive islet organ of hagfishesand lampreys. The primary structures of insulin, somatostatins,glucagons, glucagon-like peptide, and peptide tyrosine tyrosineare now available for three lamprey species representing threegenera and two of the three families. Differences in structureof peptides within, and between, families is providing supportfor earlier views on the time of divergence of the familiesand the different genera. It is concluded that due to the ancientlineage and successful habitation of lampreys and hagfishes,and the importance of the EP system to their survival, thattheir EP systems should be a research focus well into the nextcentury.  相似文献   

18.
Heart muscles of hagfishes Paramyxine atami and Eptatretus okinoseanus express the B4 isozyme of lactate dehydrogenase [L-LDH: NAD oxidoreductase, EC 1.1.1.27] (LDH-B4) whereas their skeletal muscles express LDH-A4. To examine the relationship of hagfish LDHs to lamprey and other vertebrate LDHs, we determined the cDNA sequences of LDH-A from three hagfishes and compared them with previously published sequences. A phylogenic tree shows that hagfishes diverged just after lampreys. The deduced amino acid sequences showed ten regions common to all vertebrate LDHs examined, i.e., the active site, the pocket recognizing the substrate-coenzyme complex, part of a loop at the surface, and the substrate binding site. The cyclostomate-specific regions (S1, S2) were located in the neighborhood of the active site loop. Three regions, IGS1, IGS2 and IGS3, seem to have altered their structures during the differentiation of LDH isozymes, and the regions remain in LDH-B of vertebrates hitherto examined. IGS2 and IGS3, which are in the neighborhood of the active site, may regulate catalytic activity. There were differences in six amino acid residues (6, 10, 20, 156, 269, and 341) in LDHs of hagfishes. These differences might reflect the tolerance to high pressure and low temperature of LDHs from hagfishes at different habitat depths.  相似文献   

19.
20.
The tetrameric lactate dehydrogenases (LDH) of vertebrates contain several different subunits that arose by gene duplication. While the A and B subunits occur in all classes of gnathostomes, the enzymes of agnathans appear to represent two stages in the evolution of vertebrate LDH. Lampreys of the family Petromyzontidae have a single enzyme classified as LDHA4, while hagfish possess both A and B subunits which form only the two homopolymers LDHA4 and LDHB4. It is generally assumed that the original vertebrate LDH was an A4 type, that duplication to give the B subunit occurred prior to the divergence of lampreys and hagfish, and that modern lampreys subsequently lost expression of the B gene. Lactate dehydrogenases were purified from representatives of all three lamprey families, and it was confirmed that members of the Mordaciidae and Geotriidae also possess single tetrameric LDH enzymes containing one subunit type. The kinetic properties of the lamprey LDH enzymes were compared with the LDH homopolymers of hagfish, skate, and sardine. These properties did not allow the lamprey enzymes to be unequivocally identified as either LDHA4 or LDHB4. Immunochemical titration using antisera against lamprey and hagfish LDH homopolymers demonstrated that the lamprey LDH enzymes showed greater immunochemical similarity to LDHB4 than to LDHA4 of hagfish. It is concluded that there is little evidence for the claim that the original vertebrate LDH was an A4 rather than B4 type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号