首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial reaction rate and the thermostability of the mesophilic alcohol dehydrogenase (ADH) from Lactobacillus brevis (LBADH), and the thermophilic ADH from Thermoanaerobacter sp. (ADH T) in gas-phase reaction were compared. The effects of water activity, cofactor-to-protein molar ratio, and reaction temperature on the reduction of acetophenone to 1-phenylethanol were studied. An optimal water activity of 0.55 in terms of productivity was found for both ADHs. The cofactor-to-protein molar ratio was chosen slightly higher than equimolar to increase both activity and thermostability. An excellent optimal productivity of 1,000 g x L(-1) x d(-1) for LBADH and 600 g x L(-1) x d(-1)for ADH T was found at 60 degrees C, while the highest total turnover numbers with respect to the enzyme were achieved at 30 degrees C and amounted to 4.2 million for LBADH and 1.7 million for ADH T, respectively. Interestingly, the ADH from the mesophilic L. brevisshowed the higher thermostability in the nonconventional medium gas phase.  相似文献   

2.
The kinetic and thermodynamic properties of ascorbate oxidase (AO) activity and stability of a Cucurbita maxima extract were investigated. Activity tests performed at 25 degrees C using initial ascorbic acid concentration in the range 50-750 M allowed estimating the Michaelis constant for this substrate (Km = 126 microM) and the maximum initial rate of ascorbic acid oxidation (A0,max = 1.57 mM min-1). The main thermodynamic parameters of the enzyme reaction (DeltaH* = 10.3 kJ mol-1; DeltaG* = 87.2 kJ mol-1; DeltaS* = -258 J mol-1 K-1) were estimated through activity tests performed at 25-48 C. Within such a temperature range, no decrease in the initial reaction rate was detected. The long-term thermostability of the raw extract was then investigated by means of residual activity tests carried out at 10-70 degrees C, which allowed estimating the thermodynamic parameters of the irreversible enzyme inactivation as well (DeltaH*D = 51.7 kJ mol-1; DeltaG*D = 103 kJ mol-1; S*D = -160 J mol-1 K-1). Taking into account the specific rate of AO inactivation determined at different temperatures, we also estimated the enzyme half-life (1047 min at 10 degrees C and 21.2 min at 70 degrees C) and predicted the integral activity of a continuous system using this enzyme preparation. This work should be considered as a preliminary attempt to characterize the AO activity of a C. maxima extract before its concentration by liquid-liquid extraction techniques.  相似文献   

3.
This study is concerned with characterizing cell-bound inducible beta-xylosidase produced by a strain of the thermophilic bacterial genus Thermomonospora. A crude preparation of this enzyme recovered from sonicated cells of this organism displayed high activity against paranitrophenyl-beta-xylopyranoside over a pH range of 5.5-7.7. The temperature optimum, based on a 30-min assay of activity, at pH 6.5 was 70 degrees C. The crude enzyme had a thermal half-life of approximately 1 week at 55 degrees C and pH 6.5. Xylose inhibited the enzyme. Values of K(m) and V(max) are estimated from the reaction rate data as 0.82 mM and 8 U/L, respectively.  相似文献   

4.
This paper presents a strategy for preparing an efficient immobilised alcohol dehydrogenase preparation for a gas-phase reaction. The effects of additives such as buffers and sucrose on the immobilisation efficiency (residual activity and protein loading) and on the gas-phase reaction efficiency (initial reaction rate and half-life) of Thermoanaerobacter sp. alcohol dehydrogenase were studied. The reduction of acetophenone to 1-phenylethanol under in situ cofactor regeneration using isopropanol as co-substrate was used as a model reaction at fixed reaction conditions (temperature and thermodynamic activities). A strongly enhanced thermostability of the enzyme in the gas-phase reaction was achieved when the enzyme was immobilised with 50 mM phosphate buffer (pH 7) containing sucrose five times the protein amount (on weight/weight basis). This resulted in a remarkable productivity of 200 g L−1 day−1 even at non-optimised reaction conditions. The interaction of additives with the enzyme and water affects the immobilisation and gas-phase efficiencies of the enzyme. However, it was not possible to predict the effect of additives on the gas-phase reaction efficiency even after knowing their effect on the immobilisation efficiency.  相似文献   

5.
A cold-active beta-galactosidase of Antarctic marine bacterium Pseudoalteromonas sp. 22b was synthesized by an Escherichia coli transformant harboring its gene and immobilized on glutaraldehyde-treated chitosan beads. Unlike the soluble enzyme the immobilized preparation was not inhibited by glucose, its apparent optimum temperature for activity was 10 degrees C higher (50 vs. 40 degrees C, respectively), optimum pH range was wider (pH 6-9 and 6-8, respectively) and stability at 50 degrees C was increased whilst its pH-stability remained unchanged. Soluble and immobilized preparations of Antarctic beta-galactosidase were active and stable in a broad range of NaCl concentrations (up to 3 M) and affected neither by calcium ions nor by galactose. The activity of immobilized beta-galactosidase was maintained for at least 40 days of continuous lactose hydrolysis at 15 degrees C and its shelf life at 4 degrees C exceeded 12 months. Lactose content in milk was reduced by more than 90% over a temperature range of 4-30 degrees C in continuous and batch systems employing the immobilized enzyme.  相似文献   

6.
The immobilization conditions of commercial ketoreductase for continuous enantioselective reduction in the gas-phase reaction were investigated with respect to the immobilization efficiency (residual activity and protein loading) and the gas-phase reaction efficiency (initial reaction rate, half-life, and enantioselectivity). For the analyses, ketoreductase was first immobilized by physical deposition on glass supports and the reduction of 2-butanone to (S)-2-butanol with the concomitant regeneration of NADH by 2-propanol was used as a model reaction. The optimal conditions of enzyme immobilization were obtained using an absolute pressure of 100 hPa for drying, a pH between 6.5 and 7.0, and a buffer concentration of 50 mM. The buffer concentration in particular had a strong effect on both the enzyme activity and enantioselectivity. Under optimal immobilization conditions, the thermostability of ketoreductase in the gas-phase system was enhanced compared to the aqueous-phase system, while the enantioselectivity was successfully maintained at a level identical to that of the native enzyme. These results indicate that the gas-phase reaction has a great potential for industrial production of chiral compounds, but requires careful optimization of immobilization conditions for the reaction to progress effectively.  相似文献   

7.
A one-step procedure of immobilizing soluble and aggregated preparations of D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is reported where carrier-free enzyme was entrapped in semipermeable microcapsules produced from the polycation poly(methylene-co-guanidine) in combination with CaCl2 and the polyanions alginate and cellulose sulfate. The yield of immobilization, expressed as the fraction of original activity present in microcapsules, was approximately 52 +/- 5%. The effectiveness of the entrapped oxidase for O2-dependent conversion of D-methionine at 25 degrees C was 85 +/- 10% of the free enzyme preparation. Because continuous spectrophotometric assays are generally not well compatible with insoluble enzymes, we employed a dynamic method for the rapid in situ estimation of activity and relatedly, stability of free and encapsulated oxidases using on-line measurements of the concentration of dissolved O2. Integral and differential modes of data acquisition were utilized to examine cases of fast and slow inactivation of the enzyme, respectively. With a half-life of 60 h, encapsulated TvDAO was approximately 720-fold more stable than the free enzyme under conditions of bubble aeration at 25 degrees C. The soluble oxidase was stabilized by added FAD only at temperatures of 35 degrees C or greater.  相似文献   

8.
The production of galacto-oligosaccharides (GOS) from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth was studied. A novel method of enzyme immobilization involving PEI-enzyme aggregate formation and growth of aggregates on individual fibrils of cotton cloth leading to multilayer immobilization of the enzyme was developed. A large amount of enzyme was immobilized (250 mg/g support) with about 90-95% efficiency. A maximum GOS production of 25-26% (w/w) was achieved at near 50% lactose conversion from 400 g/L of lactose at pH 4.5 and 40 degrees C. Tri- and tetrasaccharides were the major types of GOS formed, accounting for about 70% and 25% of the total GOS produced in the reactions, respectively. Temperature and pH affected not only the reaction rate but also GOS yield to some extend. A reaction pH of 6.0 increased GOS yield by as much as 10% compared with that of pH 4.5 while decreased the reaction rate of immobilized enzyme. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme under the same reaction conditions, suggesting diffusion limitation was negligible in the packed bed reactor and the enzyme carrier. Increase in the thermal stability of PEI-immobilized enzyme was also observed. The half-life for the immobilized enzyme on cotton cloth was close to 1 year at 40 degrees C and 21 days at 50 degrees C. Stable, continuous operation in a plug-flow reactor was demonstrated for about 3 days without any apparent problem. A maximum GOS production of 26% (w/w) of total sugars was attained at 50% lactose conversion with a feed containing 400 g/L of lactose at pH 4.5 and 40 degrees C. The corresponding reactor productivity was 6 kg/L/h, which is several-hundred-fold higher than those previously reported.  相似文献   

9.
The Thermotoga maritima aldolase gene has been cloned into a T7 expression vector and overexpressed in Escherichia coli. The preparation yields 470 UL(-1) of enzyme at a specific activity of 9.4 U mg(-1). During retroaldol cleavage of KDPG, the enzyme shows a k(cat) that decreases with decreasing temperature. A more than offsetting decrease in K(m) yields an enzyme that is more efficient at 40 degrees C than at 70 degrees C. The substrate specificity of the enzyme was evaluated in the synthetic direction with a range of aldehyde substrates. Although the protein shows considerable structural homology to KDPG aldolases from mesophilic sources, significant differences in substrate specificity exist. A preparative scale reaction between 2-pyridine carboxaldehyde and pyruvate provided product of the same absolute configuration as mesophilic enzymes, but with diminished stereoselectivity.  相似文献   

10.
Pectinlyase, present in different commercial pectinases used in juice technology, was immobilized on alginate beads. The optimal conditions were: 0.17 g alginate ml(-1), 1.2% (w/v or v/v) enzyme concentration and acetic-HCl/glycine-HCl buffer at pH 3.6 or tris-HCl/imidazole buffer at pH 6.4. Maximum percentage of immobilization (10.6%) was obtained with Rapidase C80. Kinetic parameters of free and immobilized pectinlyase were also determined. The pH and temperature at which activity of soluble and immobilized enzyme was maximum were 7.2 and 55 degrees C. Thermal stability was not significantly altered by immobilization, especially at 40 degrees C, showing two periods of different stability. Free and immobilized preparation reduced the viscosity of highly esterified pectin from 1.09 to 0.70 and 0.72 mm(2) s(-1), respectively, after 30 min at 40 degrees C. Furthermore, the immobilized enzyme could be re-used through 4 cycles and the efficiency loss in viscosity reduction was found to be only 9.2%.  相似文献   

11.
Two types of biocatalysts based on immobilized cells of Alcaligenes metalcaligenes exhibiting aspartate ammonia-lyase activity (EC 4.3.1.1) were developed for the enzymic preparation of L-aspartic acid from ammonium fumarate. The first type of the biocatalyst consists in individual covalently crosslinked and permeabilized cells(I), while the second type is represented by cell aggregates (II). For the above preparation, biocatalyst I can be used only discontinuously in a mixed reactor. After termination of the reaction between individual cycles of its use, the biocatalyst is returned to the reactor in the form of a highly concentrated cell suspension or paste. Biocatalyst II can be used discontinuously or continuously in a fixed-bed column of the catalyst. The effects of pH, substrate concentration and temperature on the reaction velocity and effectivity of enzymic conversion was investigated. Optimal parameters of the reaction are as follows: pH 8.5, initial substrate concentration, 1.35 mol/L, temperature for discontinuous process, 37 degrees C, and temperature for continuous process, 25 degrees C. Under these conditions the enzymic conversion of substrate to product is quantitative. Under optimal toring conditions, the specific activity of both catalysts does not change within a period of one year. The operational half-life of the biocatalyst II during continuous use in a fixed-bed column of the catalyst under standard reaction conditions depends on the quality of the substrate. The discontinuous preparation of L-asparatic acid with the aid of biocatalyst I and continuous preparation of this product with the aid of biocatalyst II have been verified under pilot-plant conditions.  相似文献   

12.
The immobilization of horseradish peroxidase (HRP) onto dissolved agarose by a photochemically initiated graft copolymerization reaction, carried out at room temperature, was studied. Enzyme immobilization parameters such as the catalyst (FeCl3) and the enzyme concentration were considered. Using hexhydro-1,3,5-triacryloyl-s-triazine (HTsT) as vinyl monomer, the agarose/HTsT ratio was the main reaction parameter controlling the copolymer characteristics. By increasing the polymer content of the sample better stability properties were obtained. For the samples with agarose/HTsT ratios of 20/40 and 40/20 (S 20-40, S 40-20) the residual activities after 240 min at 60 degrees C were respectively 47 and 18%. The residual activity in continuous working was 33% for S 40-20 (after 20 h) and 64% for S 20-40 (after 70 h). For both the synthesized copolymers no limitation to substrate diffusion was found but the flexibility of immobilized enzyme decreased with the increase of polymer content as indicated by the Km values that were 0.90 X 10(-4) mol/liter for the sample S 40-20, and 1.50 X 10(-4) mol/liter for the sample S 20-40. Other enzymes (glucose oxidase, alpha-chymotrypsin, and lipoxidase), besides HRP, were immobilized with good yields, showing the wide applicability of the proposed methodology for the preparation of a solid biocatalyst which can be conveniently stored in water suspension or as lyophilized material.  相似文献   

13.
Glucoamylase (E.C: 3.2.1.3, alpha-(1-->4)-glucan glucohydrolase) mainly hydrolyzes starch and has been extensively used in the starch, glucose (dextrose), and fermentation industries. Immobilized glucoamylase has an inherent disadvantage of lower conversion rates and low thermostability of less than 55 degrees C when used in continuous operations. We have developed crosslinked enzyme crystals (CLEC) of glucoamylase that overcome the above disadvantages, possess good thermal stability and retain 98.6% of their original activity at 70 degrees C for 1h, 77% activity at 80 degrees C for 1h, and 51.4% activity at 90 degrees C for 0.5h. CLEC glucoamylase has a specific activity of 0.0687 IU/mg and a yield of 50.7% of the original activity of the enzyme under optimum conditions with starch as the substrate. The crystals obtained are rhombohedral in shape having a size approximately 10-100 microm, a density of 1.8926 g/cm(3) and a surface area of 0.7867 m(2)/g. The pH optimum of the glucoamylase crystals was sharp at pH 4.5, unlike the soluble enzyme. The kinetic constants V(max) and K(m) exhibited a 10-fold increase as a consequence of crystallization and crosslinking. The continuous production of glucose from 10% soluble starch and 10% maltodextrin (12.5 DE) by a packed-bed reactor at 60 degrees C had a productivity of 110.58 g/L/h at a residence time of 7.6 min and 714.1g/L/h at a residence time of 3.4 min, respectively. The CLEC glucoamylase had a half-life of 10h with 4% starch substrate at 60 degrees C.  相似文献   

14.
Five bands of lactate dehydrogenase (LDH) isoenzymes were seen by polyacrylamide gel electrophoresis in gastrocnemius muscle of the turtle (Kachuga smithi). The major band was of M2H2 type and was partially purified by gel filtration and affinity chromatography. The specific activity of the enzyme was 2.6 units/mg protein. The half-life of the enzyme at 4 degrees C, was about 7 days. The optimum temperature for enzyme activity was 30 degrees C and the enzyme was irreversibly inactivated at 40 degrees C. The optimum pH for the forward reaction (pyruvate to lactate) was 5.5, while for reverse reaction it was between 8.0 to 9.5. The apparent Km values for pyruvate, NADH, lactate and NAD+ were 0.20, 0.013, 25 and 0.333 mM, respectively. Oxalate was found to be the inhibitor of LDH with Ki of about 4.2 mM.  相似文献   

15.
Shikimate 5-dehydrogenase (SKDH; EC 1.1.1.25) catalyzes the reversible reduction of 3-dehydroshikimate to shikimate and is a key enzyme in the aromatic amino acid biosynthesis pathway. The shikimate 5-dehydrogenase gene, aroE, from Archaeoglobus fulgidus was cloned and overexpressed in Escherichia coli. The recombinant enzyme purified as a homodimer and yielded a maximum specific activity of 732 U/mg at 87 degrees C (with NADP+ as coenzyme). Apparent Km values for shikimate, NADP+, and NAD+ were estimated at 0.17+/-0.03 mM, 0.19+/-0.01 mM, and 11.4+/-0.4 mM, respectively. The half-life of the A. fulgidus SKDH is 2 h at the assay temperature (87 degrees C) and 17 days at 60 degrees C. Addition of 1 M NaCl or KCl stabilized the enzyme's half-life to approximately 70 h at 87 degrees C and approximately 50 days at 60 degrees C. This work presents the first kinetic analysis of an archaeal SKDH.  相似文献   

16.
Phenylalanine hydroxylase (PAH) is a non-heme iron dioxygenase catalyzing the conversion of phenylalanine to tyrosine and is present in both prokaryotic and eukaryotic organisms. A relatively simple PAH is expressed by Chromobacterium violaceum, a gram-negative bacterium found in tropical and subtropical regions. The effects of temperature, pH and metals on the stability and catalytic activity of Chromobacterium violaceum PAH were determined by steady-state kinetics, circular dichroism (CD) and differential scanning calorimetry (DSC). The kcat and KM for phenylalanine were determined between 7 and 40 degrees C. The KM remained constant between 20 and 40 degrees C but rapidly increased below 20 degrees C. The half-life of the enzyme at 47 degrees C is 66+/-4 min in the presence of Fe(II) and 8+/-1 min in the presence of EDTA. The melting temperature of the protein determined by CD and DSC is 53+/-2 degrees C in the presence of EDTA and 63+/-2 degrees C in the presence of Fe(II). Co(II) stabilizes the enzyme (Tm=63+/-2 degrees C) and inhibits the catalytic activity by displacing iron from the active site. The optimum pH for catalytic activity and stability is 7.4. In conclusion, PAH is adapted for optimal phenylalanine binding at temperatures above 20 degrees C and Fe(II) enhances the resistance of the enzyme to thermal denaturation.  相似文献   

17.
A soluble enzyme preparation, which catalyses the polymerization of mannose, was obtained by Triton X-100 extraction of a particulate fraction derived from Phaseolus aureus hypocotyls. The product that resulted when GDP-alpha-d-mannose was used as a substrate was a beta-(1-->4)-linked mannan, about three-quarters of which was alkali-insoluble. The mannose-polymerizing enzyme activity was at least as great in the soluble preparation as in the particulate preparation, and the specific activity of the solubilized enzyme was greater by a factor of at least 3.5. Kinetic studies of the soluble enzyme indicate that the apparent K(m) is 55-62mum, and a disproportionate increase in rate is observed at high concentrations. GDP-alpha-d-glucose is a strong competitive inhibitor of the mannose-polymerizing reaction, with an apparent K(i) of 6.2mum. The soluble enzyme is relatively unstable, losing about two-thirds of its original activity in 5h at 0 degrees C or in 24h at -20 degrees C. A solvent (acetone, butanol, diethyl ether)-extracted particulate preparation, which also exhibits the same enzyme activity, is more stable, retaining full activity for at least 5 days at -20 degrees C. There was no polymerizing-enzyme activity in the soluble enzyme preparation when UDP-d-glucose, UDP-d-galactose, UDP-d-xylose, UDP-l-arabinose or UDP-d-glucuronic acid were used as substrates. However, the soluble enzyme preparation would catalyse the polymerization of glucose, with GDP-d-glucose as substrate.  相似文献   

18.
The stability of immobilized preparations of xanthine oxidase and urate oxidase was studied, and optimized, because of the potential joint use of both enzymes in clinical analysis. Xanthine oxidase was immobilized on cellulose, Sepharose, hornblende, Enzacryl-TIO, and porous glass. Thehalf-lives of these preparations at 30 degree C ranged from 40 min to 5.0 hr. In this respect immobilized enzyme resembled soluble enzyme in dilute solution (0.11 mg/ml), when the half-live was about 3.5 hr. More concentrated enzyme solution (1 mg/ml) had a half-life of 64 hr, and was, therefore, considerably more stable than the untreated immobilized xanthine oxidase preparations. Inclusion of albumen in storage and assay buffer increased the half-life of bound xanthine oxidase. So also did treatment with glutaraldehyde: in the case of xanthine oxidase bound to Enzarcyl-TIO such treatment increased the half-life at 30 degree C from 3 hr to about 100 hr. Immobilized xanthine dehydrogenase was more stable than immobilized xanthine oxidase: the dehydrogenase lost no activity during continuous assay for 5 hr at 30 degree C. The stability of immobilized urate oxidase depended on the quantity of enzyme used and on the time of stirring during immobilization: thus a preparation was made (by stirring urate oxidase (48 mg/g support) with Enzacryl-TIO for 24 hr) which lost no activity during 350 hr at 30 degree C.  相似文献   

19.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

20.
Tyrosine hydroxylase was purified from bovine corpus striatum. The native enzyme had a half-life of 15 +/- 3 min at 50 degrees C. Phosphorylation of tyrosine hydroxylase with protein kinase purified from both corpus striatum and heart activated the enzyme, but activity was rapidly lost with additional preincubation of the enzyme at 30 degrees C. Thermal denaturation studies indicated that phosphorylated tyrosine hydroxylase had a half-life of 5 +/- 2 min at 50 degrees C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号