首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainbow trout are carnivorous fish and poor metabolizers of carbohydrates, which established this species as a model organism to study the comparative physiology of insulin. Following the recent characterisation of key roles of several miRNAs in the insulin action on hepatic intermediary metabolism in mammalian models, we investigated the hypothesis that hepatic miRNA expression is postprandially regulated in the rainbow trout and temporally coordinated in the context of insulin-mediated regulation of metabolic gene expression in the liver. To address this hypothesis, we used a time-course experiment in which rainbow trout were fed a commercial diet after short-term fasting. We investigated hepatic miRNA expression, activation of the insulin pathway, and insulin regulated metabolic target genes at several time points. Several miRNAs which negatively regulate hepatic insulin signaling in mammalian model organisms were transiently increased 4 h after the meal, consistent with a potential role in acute postprandial negative feed-back regulation of the insulin pathway and attenuation of gluconeogenic gene expression. We equally observed a transient increase in omy- miRNA-33 and omy-miRNA-122b 4 h after feeding, whose homologues have potent lipogenic roles in the liver of mammalian model systems. A concurrent increase in the activity of the hepatic insulin signaling pathway and the expression of lipogenic genes (srebp1c, fas, acly) was equally observed, while lipolytic gene expression (cpt1a and cpt1b) decreased significantly 4 h after the meal. This suggests lipogenic roles of omy-miRNA-33 and omy-miRNA-122b may be conserved between rainbow trout and mammals and that these miRNAs may furthermore contribute to acute postprandial regulation of de novo hepatic lipid synthesis in rainbow trout. These findings provide a framework for future research of miRNA regulation of hepatic metabolism in trout and will help to further elucidate the metabolic phenotype of rainbow trout.  相似文献   

2.
3.
4.
To study the effect of miRNA-200b on hepatic fibrosis induced by CCl4 in mice. The C59BL/6 mice were randomly divided into three groups (normal control [NC], CCLR model [Model], and CCl 4 + miRNA-200b [miRNA]). The hepatic fibrosis was induced by CCl 4 injected subcutaneously twice per week in Model and miRNA groups. After 6 weeks building model, the mice of miRNA group were injected the miRNA-200b from caudal vein twice per week. The mice of Model and miRNA groups were continuously fed for 3 weeks. The IL-1β, IL-6, and TNF-α concentrations of serum were measured by enzyme-linked immunosorbent assay. The hepatic tissues of difference groups were observed by hematoxylin and eosin (H&E) staining, sirius red staining, Masson staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay and measured toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) proteins expressions by western blot assay. The correlation between miRNA-200b and TLR4 were analyzed by dual luciferase target assay. Compared with NC group, the interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) concentrations of Model group were significantly upregulated (P < 0.05, respectively). With miRNA-200b overexpression, the IL-1β, IL-6, and TNF-α concentrations were significantly suppressed (P < 0.05, respectively). The pathologies were improved by H&E staining, sirius red staining, and Masson staining; meanwhile, the hepatic cell apoptosis rate was significantly suppressed (P < 0.05). The TLR4 and NF-κB protein expressions of miRNA group were significantly suppressed compared with the Model group (P < 0.05, respectively). By dual luciferase target assay, the TLR4 was a target gene of miRNA-200b. The miRNA-200b upregulation improved hepatic fibrosis induced by CCl 4 via regulation of TLR4 in vivo.  相似文献   

5.
Alzheimer’s disease (AD) and age-related macular degeneration (AMD) are complex and progressive inflammatory degenerations of the human neocortex and retina. Recent molecular, genetic and epigenetic evidence indicate that at least 4 micro RNAs (miRNAs) - including the NF-кB-regulated miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 - are progressively up-regulated in both AD and AMD. This quartet of up-regulated miRNAs in turn down-regulate a small brain- and retinal-cell-relevant family of target mRNAs, including that encoding complement factor H (CFH), a major negative regulator of the innate immune and inflammatory response. Together miRNA-146a and miRNA-155 recognize an overlapping miRNA regulatory control (MiRC) region in the CFH 3’-untranslated region (3’- UTR; 5’-TTTAGTATTAA-3’) to which either of these miRNAs may interact. Progressive, pathogenic increases in specific miRNA binding to the entire 232 nucleotide CFH 3’-UTR appears to be a major regulator of CFH expression down-regulation, and the inflammatory pathology that characterizes both AMD and AD. The data presented in this report provides evidence that up-regulation of brain- and retinal- abundant miRNAs, including miRNA-9, miRNA-125b, miRNA-146a and miRNA-155, are common to the pathogenetic mechanism of CFH deficiency that drives inflammatory neurodegeneration, and for the first time indicates multiple, independent miRNA-mediated regulation of the CFH mRNA 3’-UTR.  相似文献   

6.
7.
8.

Background  

In a large number of studies, members of the microRNA (miRNA)-34 family such as miRNA-34a, miRNA-34b, miRNA-34c, as well as miRNA-125b and miRNA-155, have been shown to be regulators of apoptosis. The ability of these miRNAs to perform this function is mainly attributed to their ability to interact with the p53 tumor suppressor, which is a powerful regulator of the teratologic susceptibility of embryos. We chose to explore whether miRNA-34a/b/c, miRNA-125b and miRNA-155 may play a role in teratogenesis by using p53+/- pregnant mice treated with cyclophosphamide (CP) as a model. We evaluated how CP-induced alterations in the expression of these miRNAs in the embryonic limbs correlate with embryonic p53 genotype and CP-induced limb phenotypes.  相似文献   

9.
Li S  Zhu J  Fu H  Wan J  Hu Z  Liu S  Li J  Tie Y  Xing R  Zhu J  Sun Z  Zheng X 《Nucleic acids research》2012,40(2):884-891
microRNAs (miRNAs) are a versatile class of non-coding RNAs involved in regulation of various biological processes. miRNA-122 (miR-122) is specifically and abundantly expressed in human liver. In this study, we employed 3'-end biotinylated synthetic miR-122 to identify its targets based on affinity purification. Quantitative RT-PCR analysis of the affinity purified RNAs demonstrated a specific enrichment of several known miR-122 targets such as CAT-1 (also called SLC7A1), ADAM17 and BCL-w. Using microarray analysis of affinity purified RNAs, we also discovered many candidate target genes of miR-122. Among these candidates, we confirmed that protein kinase, interferon-inducible double-stranded RNA-dependent activator (PRKRA), a Dicer-interacting protein, is a direct target gene of miR-122. miRNA quantitative-RT-PCR results indicated that miR-122 and small interfering RNA against PRKRA may facilitate the accumulation of newly synthesized miRNAs but did not detectably affect endogenous miRNAs levels. Our findings will lead to further understanding of multiple functions of this hepato-specific miRNA. We conclude that miR-122 could repress PRKRA expression and facilitate accumulation of newly synthesized miRNAs.  相似文献   

10.
Murine Oct4+, very small embryonic-like stem cells (VSELs), are a quiescent stem cell population that requires a supportive co-culture layer to proliferate and/or to differentiate in vitro. Gene expression studies have revealed that the quiescence of these cells is due to changes in expression of parentally imprinted genes, including genes involved in cell cycle regulation and insulin and insulin-like growth factor signaling (IIS). To investigate the role of microRNAs (miRNAs) in VSEL quiescence, we performed miRNA studies in highly purified VSELs and observed a unique miRNA expression pattern in these cells. Specifically, we observed significant differences in the expression of certain miRNA species (relative to a reference cell population), including (i) miRNA-25_1 and miRNA-19 b, whose downregulation has the effect of upregulating cell cycle checkpoint genes and (ii) miRNA-675-3 p and miRNA-675-5 p, miRNA-292-5 p, miRNA-184, and miRNA-125 b, whose upregulation attenuates IIS. These observations are important for understanding the biology of these cells and for developing efficient ex vivo expansion strategies for VSELs isolated from adult tissues.  相似文献   

11.
12.
In this study a microRNA (miRNA) signature was identified in a gemcitabine resistant pancreatic ductal adenocarcinoma (PDAC) cell line model (BxPC3-GZR) and this signature was further examined in advanced PDAC tumor specimens from The Cancer Genome Atlas (TCGA) database. BxPC3-GZR showed a mesenchymal phenotype, expressed high levels of CD44 and showed a highly significant deregulation of 17 miRNAs. Based on relevance to cancer, a seven-miRNA signature (miR-100, miR-125b, miR-155, miR-21, miR-205, miR-27b and miR-455-3p) was selected for further studies. A strong correlation was observed for six of the seven miRNAs in 43 advanced tumor specimens compared to normal pancreas tissue. To assess the functional relevance we initially focused on miRNA-125b, which is over-expressed in both the BxPC3-GZR model and advanced PDAC tumor specimens. Knockdown of miRNA-125b in BxPC3-GZR and Panc-1 cells caused a partial reversal of the mesenchymal phenotype and enhanced response to gemcitabine. Moreover, RNA-seq data from each of 40 advanced PDAC tumor specimens from the TCGA data base indicate a negative correlation between expression of miRNA-125b and five of six potential target genes (BAP1, BBC3, NEU1, BCL2, STARD13). Thus far, two of these target genes, BBC3 and NEU1, that are tumor suppressor genes but not yet studied in PDAC, appear to be functional targets of miR-125b since knockdown of miR125b caused their up regulation. These miRNAs and their molecular targets may serve as targets to enhance sensitivity to chemotherapy and reduce metastatic spread.  相似文献   

13.
14.
Acute lymphoblastic leukemia (ALL) is a heterogeneous cancer commonly affecting children due to dysregulation of miRNA expression. In the current study, authors investigated the expression profile for miRNA-125b-1 and miRNA-203 among childhood ALL. Blood samples were collected from newly diagnosed childhood ALL and healthy control children. The expression profile for candidate miRNAs was detected using quantitative RT-PCR analysis. Statistical analysis were performed using receiver operating characteristic curve (ROC) to examine the diagnostic efficacy of the two miRNA and their levels among ALL clinicopathological factors and phenotypes. The median expression level for miRNA-125b-1 was significantly high in childhood ALL; while miRNA-203 level was significantly low in childhood ALL as compared to control ones. MiRNA-125-1 reported significant increase in T-ALL as compared to other ALL phenotypes. Median miRNA-203 level was high in T-ALL followed by pre-B-ALL although no significant difference was reported. Clinicopathological factors did not emphasize significance with either detected miRNAs. Using ROC curve the diagnostic efficacy was significant with an area under the curve 0.858 for miRNA-125b-1 (83.72, 100%) and 0.878 for miRNA-203 (97.67, 86.96%). The combination of the two key miRNAs revealed absolute sensitivity (100%). MiRNA-125b-1 and miRNA-203 can be useful molecular markers for diagnosis of ALL. Further studies with large cohort are warranted to validate these results.  相似文献   

15.
16.
17.
MicroRNAs (miRNAs) are small, noncoding ribonucleic acids (ncRNAs), which regulate gene expression by targeting mRNAs for translational repression and degradation. Several lines of evidences have indicated that miRNAs act as tumor suppressors and oncogenes. However, the role of miRNAs in pathogenesis of multiple myeloma (MM) remains unclear. In this study, we examined the profile of miRNA expression of primary MM cells, using miRNA microarray and quantitative real-time polymerase chain reaction (qPCR) techniques. These results showed that in the bone marrow specimens analyzed, miRNA-29b was significantly downregulated. Similar results were also observed in human myeloma cell lines (HMCLs). Adenovirus-mediated overexpression of miR-29b induced apoptosis and elevated caspase-3 activation in HMCLs. Using a bioinformatics approach, we found a perfect complementarity between miRNA-29b and the 3′UTR of myeloid-cell-leukemia 1(Mcl-1). It is further confirmed that miRNA-29b downregulated the level of Mcl-1 without effect on the mRNA level using both qRT-PCR assays and Western blot analyses. Moreover, we observed that enforced miR-29b expression by using a retarget miRNA-29b expression vector (Ad5F11p-miR-29b) could induce apoptosis and elevate caspase-3 activation in HMCLs. Our results also indicated that miRNA-29b-induced apoptosis acted antagonistically with IL-6 in HMCLs. These findings suggest that miRNA-29b may play an important role in MM as a tumor suppressor.  相似文献   

18.
BackgroundIntroduction of combined antiretroviral therapy (cART) has improved survival of HIV infected individuals, while the relative contribution of liver-related mortality increased. Especially in HIV/HCV-coinfected patients hepatic fibrosis and portal hypertension represent the main causes of liver-related morbidity and mortality. Circulating miRNA-122 levels are elevated in HIV patients and have been shown to correlate with severity of liver injury. However, the association of miRNA-122 levels and hepatic fibrosis and portal hypertension remains to be explored in HIV/HCV coinfection.MethodsFrom a total of 74 (31% female) patients with HIV/HCV coinfection were included. Serum levels of miRNA-122 were analyzed by quantitative polymerase chain reaction (PCR) and normalized to SV-40 spike-in RNA. Hepatic venous pressure gradient (HVPG) was measured in 52 (70%) patients and the fibrosis stage was determined in 63 (85%) patients using transient elastography.ResultsThe levels of circulating miRNA-122 were increased in HIV/HCV coinfected patients and significantly correlated with the alanine aminotransferase (ALT) (rs = 0.438; p<0.001) and aspartate transaminase AST values (rs = 0.336; p = 0.003), but not with fibrosis stage (p = n.s.). Interestingly, miRNA-122 levels showed an inverse correlation with hepatic venous pressure gradient (HVPG) (rs = −0.302; p = 0.03).ConclusionElevated miRNA-122 levels are associated with liver injury, and with low HVPG. Though, miRNA-122 levels are not suitable to predict the degree of fibrosis, they might function as indicators for portal hypertension in HIV/HCV coinfected patients.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号