首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Silver ions effectively inhibited both the initiation and the continuation of tomato ( Lyeopersicon esculentum Mill) ripening. Studies of protein synthesis in vivo showed that application of 2 mol m−3 silver thiosulphate to mature green fruit prevented the appearance of several novel proteins associated with ripening, including the softening enzyme polygalacturonase. However, total protein synthesis, as judged by the incorporation of [35S] methionine into proteins, continued unabated after silver treatment. Ripening was also arrested when silver was supplied after ripening had begun. The accumulation of several ripening-related mRNAs, including that for polygalacturonase, was studied by translation in vitro and using cDNA clones as hybridization probes. Silver was shown to prevent the appearance of polygalaturonase mRNA when supplied to mature green fruit and to cause a rapid reduction in the concentration of mRNA for polygalacturonase and other ripening-related proteins when supplied after ripening had begun. It is proposed that silver exerts its effects due to interaction with the ethylene perception mechanism. The results suggest that perception of ethylene is vital not only for the initiation of ripening but also for the continued expression of genes required for ripening.  相似文献   

2.
The reversible inhibition of three ripening-related processes by high-temperature treatment (38[deg]C) was examined in tomato (Lycopersicon esculentum L. cv Daniella) fruit. Ethylene production, color development, and softening were inhibited during heating and recovered afterward, whether recovery took place at 20[deg]C or fruit were first held at chilling temperature (2[deg]C) after heating and then placed at 20[deg]C. Ethylene production and color development proceeded normally in heated fruit after 14 d of chilling, whereas the unheated fruit had delayed ethylene production and uneven color development. Levels of mRNA for 1-aminocyclopropane-1-carboxylic acid oxidase, phytoene synthase, and polygalacturonase decreased dramatically during the heat treatment but recovered afterward, whereas the mRNA for HSP17 increased during the high-temperature treatment and then decreased when fruit were removed from heat. As monitored by western blots, the HSP17 protein disappeared from fruit tissue after 3 d at 20[deg]C but remained when fruit were held at 2[deg]C. The persistence of heat-shock proteins at low temperature may be relevant to the protection against chilling injury provided by the heat treatment. Protein levels of 1-aminocyclopropane-1-carboxylic acid oxidase and polygalacturonase also did not closely follow the changes in their respective mRNAs. This implied both differences in relative stability and turnover rates of mRNA compared to protein and nontranslation of the message that accumulated in low temperature. The results suggest that high temperature inhibits ripening by inhibiting the accumulation of ripening-related mRNAs. Ripening processes that depend on continuous protein synthesis including ethylene production, lycopene accumulation, and cell-wall dissolution are thereby diminished.  相似文献   

3.
Tomato mRNA was extracted from individual fruits at different stages of development and ripening, translated in a rabbit reticulocyte lysate and the protein products analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The results indicate that there are at least two classes of mRNA under separate developmental control. One group of approximately six mRNAs is present during fruit growth and then declines at the mature-green stage. Another group of between four and eight mRNAs increases substantially in amount at the onset of ripening, after the start of enhanced ethylene synthesis by the fruit, and continues to accumulate as ripening progresses. Studies of protein synthesis in vivo show that several new proteins are synthesised by ripening fruits including the fruit-softening enzyme polygalacturonase. One of the ripening-related mRNAs is shown to code for polygalacturonase, by immunoprecipitation with serum from rabbits immunised against the purified tomato enzyme. Polygalacturonase mRNA is not detectable in green fruit but accumulates during ripening. It is proposed that the ripening-related mRNAs are the products of a group of genes that code for enzymes important in the ripening process.Abbreviation SDS sodium dodecyl sulfate  相似文献   

4.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

5.
6.
7.
Differential sereening of a cDNA library made from RNA extracted from avocado (Persea americana Mill cv. Hass) fruit stored at low temperature (7°C) gave 23 cDNA clones grouped into 10 families, 6 of which showed increased expression during cold storage and normal ripening. Partial DNA sequencing was carried out for representative clones. Database searches found homologies with a polygalacturonase (PG), endochitinase, cysteine proteinase inhibitor and several stress-related proteins. No homologies were detected for clones from six families and their biological role remains to be elucidated. A full-length cDNA sequence for avocado PG was obtained and the predicted amino acid sequence compared with those from other PGs. mRNA encoding PG increased markedly during normal ripening, slightly later than mRNAs for cellulase and ethylene-forming enzyme (EFE). Low-temperature storage delayed ripening and retarded the appearance of mRNAs for enzymes known to be involved in cell wall metabolism and ethylene synthesis, such as cellulase, PG and EFE, and also other mRNAs of unknown function. The removal of ethylene from the atmosphere surrounding stored fruit delayed the appearance of the mRNAs encoding cellulase and PG more than the cold storage itself, although it hardly affected the expression of the EFE mRNA or the accumulation of mRNAs homologous to some other unidentified clones.AFRC Research Group in Plant Gene Regulation  相似文献   

8.
Molecular biology of fruit ripening and its manipulation with antisense genes   总被引:25,自引:0,他引:25  
Considerable progress in tomato molecular biology has been made over the past five years. At least 19 different mRNAs which increase in amount during tomato fruit ripening have been cloned and genes for enzymes involved in cell wall degradation (polygalacturonase and pectinesterase) and ethylene synthesis (ACC synthase) have been identified by conventional procedures. Transgenic plants have been used to identify regions of DNA flanking fruit-specific, ripening-related and ethylene-regulated genes and trans-acting factors which bind to these promoters have also been identified.Antisense genes expressed in transgenic plants have proved to be highly effective for inhibiting the specific expression of ripening-related genes. These experiments have changed our understanding of how softening occurs in tomato fruit. Antisense techniques have also been used to identify genes encoding enzymes for carotenoid biosynthesis (phytoene synthase) and ethylene biosynthesis (the ethylene-forming enzyme). The altered characteristics of fruit transformed with specific antisense genes, such as retarded ripening and resistance to splitting, may prove to be of value to fruit growers, processors and ultimately the consumer.  相似文献   

9.
Summary Gene expression during the ripening of tomato fruit was investigated by cDNA cloning and hybrid-select translation. A cDNA library was prepared from poly(A)-containing mRNA from ripe tomato fruit and sreened by differential hybridization. 146 ripening-related cDNA clones were found. Eleven groups and eight unique clones have been identified so far. The sizes of the cloned cDNA inserts were determined and type-members for seven groups were used in hybrid selection experiments. Six of the seven clones encode translation products corresponding to six ripening related polypeptides detected previously by in vitro translation of total cytoplasmic RNA (14). One cDNA group codes for a Mr 48 000 protein that was identified as polygalacturonase on the basis of immunoprecipitation with specific antiserum raised against tomato polygalacturonase. re]19840918 rv]19850613 ac]19850618  相似文献   

10.
Lu C  Zainal Z  Tucker GA  Lycett GW 《The Plant cell》2001,13(8):1819-1833
A cDNA clone from tomato fruit encodes a protein with strong homology with the rab11/YPT3 class of small GTPases that is thought to be involved in the control of protein trafficking within cells. The gene, LeRab11a, showed a pattern consistent with a single copy in DNA gel blots. The corresponding mRNA was developmentally regulated during fruit ripening, and its expression was inhibited in several ripening mutants. Its reduced expression in the Never-ripe mutant indicates that it may be induced by ethylene in fruit. The ripening-induced expression in tissues that are undergoing cell wall loosening immediately suggests a possible role in trafficking of cell wall-modifying enzymes. The message also was produced in leaves and flowers but not in roots. Antisense transformation was used to generate a "mutant phenotype." Antisense fruit changed color as expected but failed to soften normally. This was accompanied by reduced levels of two cell wall hydrolases, pectinesterase and polygalacturonase. There were other phenotypic effects in the plants, including determinate growth, reduced apical dominance, branched inflorescences, abnormal floral structure, and ectopic shoots on the leaves. In some plants, ethylene production was reduced. These data suggest an alternative or additional role in exocytosis or endocytosis of homeotic proteins, hormone carriers, or receptors.  相似文献   

11.
EIN2 (ethylene insensitive 2) is a very important component in the ethylene signal transduction pathway. Recently, the genomic DNA and full-length cDNA of LeEIN2 (tomato EIN2) have been isolated in our laboratory. To reveal the function of LeEIN2, transgenic tomato plants with reduced expression levels of LeEIN2 were produced. The fruit ripening and expressions of ripening-related genes encoding polygalacturonase and TomLoxB were inhibited in the LeEIN2-silenced transgenic plants compared to the wild-type Ailsa Craig. In the seedling ethylene response assay, the transgenic tomato plants with reduced LeEIN2 expression exhibited ethylene insensitivity. These results indicate that LeEIN2 plays a critical role in regulating tomato fruit ripening and is a positive regulator in ethylene signal transduction pathway.  相似文献   

12.
The organization and expression of ripening-related genes were investigated in normal tomato (Lycopersicon esculentum cv. Ailsa Craig) and in Neverripe (Nr) and Ripening inhibitor (rin) mutants.Hybridization studies with ripening-related cDNA clones showed that the gene for polygalacturonase (PG) is barely expressed in rin and expressed at a low level in Nr fruit. Four other genes were found to be expressed at reduced levels in rin. Exogenous ethylene was able to restore higher levels of expression of all the genes showing reduced expression in rin except that for PG. However, exogenous ethylene did not restore normal ripening in rin fruit. Analysis of chromosomal DNA by Southern blotting indicated that all the genes studied, including the PG gene, and also an upstream promoter of the PG gene, are present in the rin and Nr genomes and appear to be arranged in a similar way to those in normal tomatoes. The results are discussed in the light of the suggestion that these mutations may involve part of the regulatory apparatus leading to the expression of ripening genes such as PG.  相似文献   

13.
In vitro translation of mRNAs and polyacrylamide gel electrophoresis of proteins from melons revealed that several mRNAs increased in amount during ripening, indicating the existence of other ripening genes in addition to those cloned previously. To identify ripening-related genes we have screened a ripe melon cDNA library and isolated two novel cDNA clones (MEL2 and MEL7) encoding unidentified proteins. Southern analysis revealed that MEL2 and MEL7 are encoded by low-copy-number genes. The MEL2 cDNA clone is near full-length, corresponds to a 1600 nucleotide mRNA that accumulates during ripening and encodes a predicted protein rich in hydrophobic amino acids. The MEL7 cDNA clone is full-length, corresponds to a mRNA of 0.7 kb which accumulates during early ripening stages and is also present at low levels in other organs of the melon plant. The MEL7 predicted polypeptide is 17 kDa and shows significant homology with the major latex protein from opium-poppy. Wounding and ethylene treatment of unripe melon fruits 20 days after anthesis showed that MEL2 and MEL7 mRNAs are only induced by ethylene.  相似文献   

14.
15.
High concentrations of CO2 block or delay the ripening of fruits. In this study we investigated the effects of high CO2 on ripening and on the expression of stress- and ripening-inducible genes in cherry tomato (Lycopersicon esculentum Mill.) fruit. Mature-green tomato fruits were submitted to a high CO2 concentration (20%) for 3 d and then transferred to air. These conditions effectively inhibited ripening-associated color changes and ethylene production, and reduced the protein content. No clear-cut effect was observed on the expression of two proteolysis-related genes, encoding polyubiquitin and ubiquitin-conjugating enzyme E2, respectively. Exposure of fruit to high CO2 also resulted in the strong induction of two genes encoding stress-related proteins: a ripening-regulated heat-shock protein and glutamate decarboxylase. Induction of these two genes indicated that high CO2 had a stress effect, most likely through cytosolic acidification. In addition, high CO2 blocked the accumulation of mRNAs for genes involved in the main ripening-related changes: ethylene synthesis (1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase), color (phytoene synthase), firmness (polygalacturonase), and sugar accumulation (acid invertase). The expression of ripening-specific genes was affected by CO2 regardless of whether their induction was ethylene- or development-dependent. It is proposed that the inhibition of tomato fruit ripening by high CO2 is due, in part, to the suppression of the expression of ripening-associated genes, which is probably related to the stress effect exerted by high CO2.  相似文献   

16.
Ethylene promotes fruit ripening, including softening. The fruit of melting-flesh peach (Prunus persica (L). Batsch) cultivar 'Akatsuki' produces increasing levels of ethylene, and the flesh firmness softens rapidly during the ripening stage. On the other hand, the fruit of stony hard peach cultivars 'Yumyeong', 'Odoroki', and 'Manami' does not soften and produces little ethylene during fruit ripening and storage. To clarify the mechanism of suppression of ethylene production in stony hard peaches, the expression patterns of four ethylene biosynthesis enzymes were examined: ACC synthases (Pp-ACS1, Pp-ACS2, and Pp-ACS3) and ACC oxidase (Pp-ACO1). In the melting-flesh cultivar 'Akatsuki', Pp-ACS1 mRNA was dramatically induced after harvesting, and a large amount of ethylene was produced. On the other hand, in stony hard peaches, Pp-ACS1 mRNA was not induced during the ripening stage, and ethylene production was inhibited. Since Pp-ACS1 mRNA was induced normally in senescing flowers, wounded leaves, and wounded immature fruit of 'Yumyeong', Pp-ACS1 was suppressed only at the ripening stage, and was not a defect in Pp-ACS1. These results indicate that the suppression of fruit softening in stony hard peach cultivars was caused by a low level of ethylene production, which depends on the suppressed expression of Pp-ACS1.  相似文献   

17.
Strawberry fruit shows a marked softening during ripening and the process is associated with an increment of pectin solubility and a reduction of the molecular mass of hemicelluloses. In this work, we report the activity of beta-xylosidase and the expression of a beta-xylosidase gene in strawberry fruit. We have cloned a cDNA fragment encoding a putative beta-xylosidase (FaXyl1) from a cDNA library obtained from ripe strawberry fruit. The analysis of the deduced amino acid sequence revealed that FaXyl1 is closely related to other beta-xylosidases from higher plants. The expression of FaXyl1 was strongly associated to the receptacle tissue although a low expression level was detected in achenes and ovaries. The accumulation of FaXyl1 mRNA is ripening-related, starting in white fruit, reaching the maximum at 25-50% red fruit and decreasing thereafter. The total beta-xylosidase enzyme activity was detected in all ripening stages with the maximum in 25-50% red fruit. The low activity level detected in immature stages, where no expression of FaXyl1 was found, suggests the presence of other beta-xylosidases-like genes. Both the expression of FcaXyl1 and the total beta-xylosidase activity were down regulated by auxins, as occurs for most of the ripening-related processes in strawberry fruit. A putative role of FaXyl1 and beta-xylosidase is discussed.  相似文献   

18.
Fruit ripening is a complex developmental process that involves specific changes in gene expression and cellular metabolism. In climateric fruits these events are coordinated by the gaseous hormone ethylene, which is synthesized autocatalytically in the early stages of ripening. Nonclimacteric fruits do not synthesize or respond to ethylene in this manner, yet undergo many of the same physiological and biochemical changes associated with the production of a ripe fruit. To gain insight into the molecular determinants associated with nonclimacteric fruit ripening, we examined mRNA populations in ripening strawberry fruit using polymerase chain reaction (PCR) differential display. Five mRNAs with ripening-enhanced expression were identified using this approach. Three of the mRNAs appear to be fruit-specific, with little or no expression detected in vegetative tissues. Sequence analysis of cDNA clones revealed positive identities for three of the five mRNAs based on homology to known proteins. These results indicate that the differential display technique can be a useful tool to study fruit ripening and other developmental processes in plants at the RNA level.  相似文献   

19.
An ethylene-related cDNA from ripening apples   总被引:17,自引:0,他引:17  
We report the isolation of a ripening-related apple cDNA which is complementary to a mRNA which may be involved in ethylene production. Poly(A)+ RNA was extracted from cortical tissue of ripe apple fruit (Malus domestica Borkh cv. Golden Delicious) and a cDNA library constructed in the plasmid vector pSPORT. The library was screened with pTOM13, a tomato cDNA clone thought to code for ACC oxidase in that fruit. An apple cDNA clone (pAP4) was isolated and sequenced. The 1182 bp cDNA insert includes an open reading frame of 942 bp, and shows strong homology with reported tomato and avocado sequences, both at the nucleic acid and amino acid levels. The polypeptide has a calculated molecular mass of 35.4 kDa and a calculated pI of 5.15. In apple cortical tissue, expression of pAP4-complementary RNA increased with ethylene production by the fruit during ripening. Expression was also enhanced in both ethylene-treated and wounded fruit.  相似文献   

20.
Charentais melons (Cucumis melo cv Reticulatus) are climacteric and undergo extremely rapid ripening. Sixteen cDNAs corresponding to mRNAs whose abundance is ripening regulated were isolated to characterize the changes in gene expression that accompany this very rapid ripening process. Sequence comparisons indicated that eight of these cDNA clones encoded proteins that have been previously characterized, with one corresponding to ACC (1-aminocyclopropane-1-carboxylic acid) oxidase, three to proteins associated with pathogen responses, two to proteins involved in sulfur amino acid biosynthesis, and two having significant homology to a seed storage protein or a yeast secretory protein. The remaining eight cDNA sequences did not reveal significant sequence similarities to previously characterized proteins. The majority of the 16 ripening-regulated cDNAs corresponded to mRNAs that were fruit specific, although three were expressed at low levels in vegetative tissues. When examined in transgenic antisense ACC oxidase melon fruit, three distinct patterns of mRNA accumulation were observed. One group of cDNAs corresponded to mRNAs whose abundance was reduced in transgenic fruit but inducible by ethylene treatment, indicating that these genes are directly regulated by ethylene. A second group of mRNAs was not significantly altered in the transgenic fruit and was unaffected by treatment with ethylene, indicating that these genes are regulated by ethylene-independent developmental cues. The third and largest group of cDNAs showed an unexpected pattern of expression, with levels of mRNA reduced in transgenic fruit and remaining low after exposure to ethylene. Regulation of this third group of genes thus appears to ethylene independent, but may be regulated by developmental cues that require ethylene at a certain stage in fruit development. The results confirm that both ethylene-dependent and ethylene-independent pathways of gene regulation coexist in climacteric fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号