首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H and CuM). The CuH center changes from 4- or 5-coordinate tetragonal to a 2-coordinate configuration, with one of the three histidine ligands becoming undetectable by EXAFS (suggesting that it has moved away from the CuH by at least 0.3 Å). The CuM center changes from 4- or 5-coordinate tetragonal to a trigonal or tetrahedral configuration, with an estimated 0.3–0.5 Å movement of the M314 S ligand. Reduction also leads to loss of coordinated water from both of the coppers. Substrate binding has little or no effect on the local environment of the Cu centers in either oxidation state. These findings bring into question whether direct electron transfer between CuH and CuM via a tunneling mechanism can be fast enough to support the observed catalytic rate, and suggest that some other mechanism for electron transfer, such as superoxide channeling, should be considered. Received: 17 November 1999 / Accepted: 25 February 2000  相似文献   

3.
4.
5.
The influence of binding of square planar platinum complexes on tautomeric equilibria of the DNA bases guanine and adenine was investigated using the density functional B3LYP method. Neutral trans-dichloro(amine)-, +1 charged chloro(diamine)-, and +2 charged triamine-platinum(II) species were chosen for coordination to bases. Only the N7 interaction site of the bases was considered. The calculations demonstrate that the neutral platinum adduct does not change the tautomeric equilibria of the bases. Furthermore, N7 binding of the neutral Pt adduct moderately reduces the probability of protonation of the N1 position of adenine. Larger effects can be observed for +1 and mainly +2 adducts, but these can be rationalized by electrostatic effects. Since the electrostatic effects are expected to be efficiently compensated for by a charged backbone of DNA and counterions in a polar solvent, no dramatic increase in mispair formation is predicted for Pt(II) adducts, which is in agreement with experiment. The interaction energies between Pt adducts and the nucleobases were also evaluated. These interaction energies range from ca. 210 kJ/mol for neutral adducts, interacting with both bases and their tautomers, up to 500 kJ/mol for the +2 charged adducts, interacting with the keto-guanine tautomer and the anti-imino-adenine tautomer. The surprisingly large interaction energy for the latter structure is due to the strong H-bond between the NH3 ligand group of the metal adduct and the N6 nitrogen atom of the base. Received: 6 July 1999 / Accepted: 7 December 1999  相似文献   

6.
Resonance Raman spectra are reported for native horseradish peroxidase (HRP) and cytochrome c peroxidase (CCP) at 290, 77 and 9 K, using 406.7 nm excitation, in resonance with the Soret electronic transition. The spectra reveal temperature-dependent equilibria involving changes in coordination or spin state. At 290 K and pH 6.5, CCP contains a mixture of 5- and 6-coordinate high-spin FeIII heme while at 9 K the equilibrium is shifted entirely to the 6-coordinate species. The spectra indicate weak binding of H2O to the heme Pe, consistent with the long distance, 2.4 Å, seen in the crystal structure. At 290 K HRP also contains a mixture of high-spin FeIII hemes with the 5-coordinate form predominant. At low temperature, a small 6-coordinate high-spin component remains but the 5-coordinate high-spin spectrum is replaced by another which is characteristic either of 6-coordinate low-spin or 5-coordinate intermediate spin heme. The latter species is definitely indicated by previous EPR studies at low temperature. This behavior implies that, in contrast to CCP, the distal coordination site of HRP is only partially occupied by H2O at any temperature and that lowering the temperature significantly weakens the Fe-proximal imidazole bond. Consistent with this inference, the 77 K spectrum of reduced HRP shows an appreciable fraction of molecules having an Fe-imidazole stretching frequency of 222 cm−1, a value indicating weakened H-bonding of the proximal imidazole.Resonance Roman spectroscopyHorseradish peroxidaseCytochrome c peroxidaseCoordination equilibrium  相似文献   

7.
Chen Z  Wang LH  Schelvis JP 《Biochemistry》2003,42(9):2542-2551
Thromboxane synthase is a hemethiolate enzyme that catalyzes the isomerization of prostaglandin H2 to thromboxane A2. We report the first resonance Raman (RR) spectra of recombinant human thromboxane synthase (TXAS) in both the presence and the absence of substrate analogues U44069 and U46619. The resting enzyme and its U44069 complex are found to have a 6-coordinate, low spin (6c/ls) heme, in agreement with earlier experiments. The U46619-bound enzyme is detected as a 6c/ls heme too, which is in contradiction with a previous conclusion based on absorption difference spectroscopy. Two new vibrations at 368 and 424 cm(-1) are observed upon binding of the substrate analogues in the heme pocket and are assigned to the second propionate and vinyl bending modes, respectively. We interpret the changes in these vibrational modes as the disruption of the protein environment and the hydrogen-bonding network of one of the propionate groups when the substrate analogues enter the heme pocket. We use carbocyclic thromboxane A2 (CTA2) to convert the TXAS heme cofactor to its 5-coordinate, high spin (5c/hs) form, as is confirmed by optical and RR spectroscopy. In this 5c/hs state of the enzyme, the Fe-S stretching frequency is determined at 350 cm(-1) with excitation at 356.4 nm. This assignment is supported by comparison to the spectrum of resting enzyme excited at 356.4 nm and by exciting at different wavelengths. Implications of our findings for substrate binding and the catalytic mechanism of TXAS will be discussed.  相似文献   

8.
The concentration of carbon suboxide (C3O2) in the plasmas of sealed-off discharges in mixtures of CO with noble gases is measured for the first time by mass-spectroscopic technique. It is shown that the production of C3O2 (and, possibly, more complex carbon oxides) in a gas-discharge plasma significantly boosts the vibrational relaxation of CO molecules and thus greatly affects their vibrational populations. Adding xenon to a He: CO mixture reduces the concentration of C3O2. The effect of pulsed UV radiation on the vibrational populations of CO molecules is studied experimentally. It is shown that UV irradiation of the gas mixture after long-term discharge operation increases vibrational populations in the plateau region up to the values observed at the beginning of the discharge. This effect is attributed to the decay of C3O2 molecules under the action of UV radiation.  相似文献   

9.
J Ramsden  T G Spiro 《Biochemistry》1989,28(8):3125-3128
The resonance Raman band assigned to Fe--CO stretching in the sperm whale myoglobin CO adduct shifts from 507 cm-1 at neutral pH to 488 cm-1 at low pH, in concert with a shift of the C-O stretching infrared band from 1947 to 1967 cm-1 (Fuchsman & Appleby, 1979), while the 575-cm-1 Fe-C-O bending RR band loses intensity. The pKa that characterizes these changes is approximately 4.4. The vibrational frequencies at low pH are well modeled by the protein-free CO, imidazole adduct of protoheme in a nonpolar solvent while those at high pH are modeled by the adduct of a heme with a covalent strap (Yu et al., 1983) which inhibits upright CO binding. It is inferred that the Fe-C-O unit changes from a tilted to an upright geometry when the distal histidine is protonated, because its side chain swings out of the heme pocket due to electrostatic repulsion with a nearby arginine residue. A different protonation step (pKa = 5.7), which has been shown to modulate the CO rebinding kinetics (Doster et al., 1982) as well as the optical spectrum (Fuchsman & Appleby, 1979), is suggested to involve a global structure change associated with protonation of histidine residues distant from the heme.  相似文献   

10.
 Quantum chemical geometry optimisations have been performed on realistic models of the active site of myoglobin using density functional methods. The energy of the hydrogen bond between the distal histidine residue and CO or O2 has been estimated to be 8 kJ/mol and 32 kJ/mol, respectively. This 24 kJ/mol energy difference accounts for most of the discrimination between CO and O2 by myoglobin (about 17 kJ/mol). Thus, steric effects seem to be of minor importance for this discrimination. The Fe—C and C—O vibrational frequencies of CO-myoglobin have also been studied and the results indicate that CO forms hydrogen bonds to either the distal histidine residue or a water molecule during normal conditions. We have made several attempts to optimise structures with the deprotonated nitrogen atom of histidine directed towards CO. However, all such structures lead to unfavourable interactions between the histidine and CO, and to νCO frequencies higher than those observed experimentally. Received: 7 July 1998 / Accepted: 26 October 1998  相似文献   

11.
AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)–SH heme complex was quickly converted into Fe(II) and Fe(II)–O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)–SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)–OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity.  相似文献   

12.
Phenylmercury acetate reacts with tributylphosphine in benzene solution to form a 3-coordinate 1:1 adduct of high stability with a large negative enthalpy of formation (K>104 l mol−1, 2H = −66 kJ mol−1). Similar adducts of lower stability (K<50) are formed by triphenylphosphine, unidentate aliphatic amines and heterocylic bases and pyridine-N-oxide. The bidentate bases tetramethyl-1,2-diaminoethane and 1,10-phenanthroline form chelate, 4-coordinate 1:1 adducts of greater stability than the unidentate N-bases, but no reaction is evident with 2,2′-bipyridine. The reuslts show the ‘soft’ character of the mercury atom and its reluctance to adopt a coordination number greater than three.  相似文献   

13.
 The paradigm that nature protects us from CO poisoning by forcing the bound CO to bend over in heme proteins, thereby reducing its binding affinity, is now in textbooks, but is nevertheless problematic. Results from vibrational spectroscopy give no evidence for bent CO, although X-ray crystallography continues to indicate appreciable distortions in myoglobin. However, the energetic significance of the discrepancy is doubtful, since new Density Functional Theory calculations indicate that much less energy is required to distort the CO than had been thought, perhaps 2 kcal/mol or less. Binding studies on site-directed mutants of myoglobin suggest that steric hindrance by the distal histidine is worth ca. 1 kcal/mol. While the distal histidine does account for the discrimination by Mb against CO and in favor of O2, most of the effect is due to its H-bond with bound O2. Received, accepted: 23 May 1997  相似文献   

14.
The decreased expression of the nitric oxide (NO) receptor, soluble guanylyl cyclase (sGC), occurs in response to multiple stimuli in vivo and in cell culture and correlates with various disease states such as hypertension, inflammation, and neurodegenerative disorders. The ability to understand and modulate sGC expression and cGMP levels in any of these conditions could be a valuable therapeutic tool. We demonstrate herein that the c-Jun NH2-terminal kinase JNK II inhibitor anthra[1,9-cd]pyrazol-6(2H)-one (SP-600125) completely blocked the decreased expression of sGC1-subunit mRNA by nerve growth factor (NGF) in PC12 cells. Inhibitors of the ERK and p38 MAPK pathways, PD-98059 and SB-203580, had no effect. SP-600125 also inhibited the NGF-mediated decrease in the expression of sGC1 protein as well as sGC activity in PC12 cells. Other experiments revealed that decreased sGC1 mRNA expression through a cAMP-mediated pathway, using forskolin, was not blocked by SP-600125. We also demonstrate that TNF-/IL-1 stimulation of rat fetal lung (RFL-6) fibroblast cells resulted in sGC1 mRNA inhibition, which was blocked by SP-600125. Expression of a constitutively active JNKK2-JNK1 fusion protein in RFL-6 cells caused endogenous sGC1 mRNA levels to decrease, while a constitutively active ERK2 protein had no effect. Collectively, these data demonstrate that SP-600125 may influence the intracellular levels of the sGC1-subunit in certain cell types and may implicate a role for c-Jun kinase in the regulation of sGC1 expression.  相似文献   

15.
The reaction mechanisms of H2 with OCS have been investigated theoretically by using density function theory method. Three possible pathways leading to major products CO and H2S, as well as two possible pathways leading to by-product CH4 have been proposed and discussed. For these reaction pathways, the structure parameters, vibrational frequencies and energies for each stationary point have been calculated, and the corresponding reaction mechanism has been given by the potential energy surface, which is drawn according to the relative energies. The calculated results show that the corresponding major products CO and H2S as well as by-product CH4 are in agreement with experimental findings, which provided a new illustration and guidance for the reaction of H2 with OCS.  相似文献   

16.
Andrew CR  George SJ  Lawson DM  Eady RR 《Biochemistry》2002,41(7):2353-2360
The 5-coordinate ferrous heme of Alcaligenes xylosoxidans cytochrome c' reacts with NO to form a 6-coordinate nitrosyl intermediate (lambdaSoret at 415 nm) which subsequently converts to a 5-coordinate nitrosyl end product (lambdaSoret at 395 nm) in a rate-determining step. Stopped-flow measurements at pH 8.9, 25 degrees C, yield a rate constant for the formation of the 6-coordinate nitrosyl adduct, k(on) = (4.4 +/- 0.5) x 10(4) M(-1) x s(-1), which is 3-4 orders of magnitude lower than the values for other pentacoordinate ferrous hemes and is consistent with NO binding within the sterically crowded distal heme pocket. Resonance Raman measurements of the freeze-trapped 6-coordinate nitrosyl intermediate reveal an unusually high Fe-NO stretching frequency of 579 cm(-1), suggesting a distorted Fe-N-O coordination geometry. The rate of 6- to 5-coordinate heme nitrosyl conversion is also dependent upon NO concentration, with a rate constant, k(6-5) = (8.1 +/- 0.7) x 10(3) M(-1) x s(-1), implying that an additional molecule of NO is required to form the 5c-NO adduct. Since crystallographic studies have shown that the 5-coordinate nitrosyl complex of cytochrome c' binds NO to the proximal (rather than distal) face of the heme, the NO dependence of the 6- to 5-coordinate NO conversion supports a mechanism in which the weakened His ligand, as well as the distally bound NO, is displaced by a second NO molecule which attacks and is retained in the proximal coordination position. The fact that a dependent 6- to 5-coordinate nitrosyl conversion has been previously reported for soluble guanylate cyclase suggests that the mechanism of Fe-His bond cleavage may be similar to that of cytochrome c' and strengthens the recent proposal that both proteins exhibit proximal NO binding in their 5-coordinate nitrosyl adducts.  相似文献   

17.
The adsorption of the iron Lewis acid-THF adduct CpFe(CO)2 · THF (1) onto the silica gel has been observed to dramatically alter the cis:trans ratio for cyclopropanation reactions versus the homogeneous catalyzed reactions. To better understand this dramatic change in selectivity, we investigated the nature of bonding of 1 on silica with a number of analytical techniques. X-ray photoelectron spectroscopy showed the presence of a new peak at 687.7 eV for the silica-supported catalyst, which indicated possible fluorination by the anion. Further experiments using solid state NMR showed that a new boron species was also generated by the adsorption onto the silica gel. Mössbauer spectroscopy showed that adsorption of the iron Lewis acid-THF adduct onto the silica gel did not change the oxidation state to the iron; however, diffuse reflectance infrared spectroscopy showed the loss of surface hydroxyl groups and a shift in one of the C-O absorptions to higher wave numbers. The combined data suggest fluorination of the silica surface by the anion. This theory was tested by adsorption of the iron Lewis acid-THF adduct onto a polytrimethyl hydrosilylsilicate resin and sodium perchlorate treated silica. Analysis showed that both fluorination and physical adsorption of the catalysts occur, although fluorination was found to predominate for binding.  相似文献   

18.
N,N′,N″,N‴ -pentaacetic acid) bearing different substituents for binding to human serum albumin (HSA) are compared. In spite of the structural differences of the recognition synthon and of the residual electric charge, the two chelates display an analogous binding affinity for the serum protein. Upon formation of the adducts with HSA, the exchange rates of the coordinated water appear slowed down by an amount corresponding to ca. 50% of the rates found for the free complexes. The relaxivity of [Gd(BOM)3DTPA (H2O)]2 −  is significantly higher than that of MS-325 either in the free complex or in the macromolecular adduct. Finally, the effect of pH on the stability of the HSA adducts and on the values of their relaxivities has been investigated. Received: 11 June 1999 / Accepted: 15 September 1999  相似文献   

19.
During complex formation between α2-macroglobulin and trypsin the internal thiol esters (one in each of the four Mr 180,000 subunits) are activated. In this activated state (nascent α2-macroglobulin-trypsin complex) addition of low Mr amines lead to their covalent incorporation into α2M. Evidence is presented showing that covalent binding of added amines occurs at the γ-carbonyl group of the Glx-residue in the thiol ester sequence:
  相似文献   

20.
Aromatic substrate binding to peroxidases is mediated through hydrophobic and hydrogen bonding interactions between residues on the distal side of the heme and the substrate molecule. The effects of perturbing these interactions are investigated by an electronic absorption and resonance Raman study of benzohydroxamic acid (BHA) binding to a series of mutants of horseradish peroxidase isoenzyme C (HRPC). In particular, the Phe179 --> Ala, His42 --> Glu variants and the double mutant His42 --> Glu:Arg38 --> Leu are studied in their ferric state at pH 7 with and without BHA. A comparison of the data with those previously reported for wild-type HRPC and other distal site mutants reaffirms that in the resting state mutation of His42 leads to an increase of 6-coordinate aquo heme forms at the expense of the 5-coordinate heme state, which is the dominant species in wild-type HRPC. The His42Glu:Arg38Leu double mutant displays an enhanced proportion of the pentacoordinate heme state, similar to the single Arg38Leu mutant. The heme spin states are insensitive to mutation of the Phe179 residue. The BHA complexes of all mutants are found to have a greater amount of unbound form compared to the wild-type HRPC complex. It is apparent from the spectral changes induced on complexation with BHA that, although Phe179 provides an important hydrophobic interaction with BHA, the hydrogen bonds formed between His42 and, in particular, Arg38 and BHA assume a more critical role in the binding of BHA to the resting state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号