首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotype G9 human rotaviruses have emerged globally since the mid-1990s. The 95H115 strain was derived from a stool specimen collected in Japan in the 1994-95 season, thus it is the earliest of the globally reemerging G9 human rotaviruses that were adapted to cell culture. Genogrouping by RNA-RNA hybridization was performed to examine the genetic background of 95H115. The 95H115 strain belonged to the Wa genogroup, the most common human rotavirus genogroup, and it had a high degree of homology with AU32 and WI61, the prototype G9 isolates in the 1980s. However, the divergent genomic RNA constellation as indicated by the aberrant hybridization patterns between 95H115 and earlier G9 strains served as further evidence that 95H115 was not a direct descendant of the prototype strains in the '80s.  相似文献   

2.
A safe and effective group A rotavirus vaccine that could prevent severe diarrhea or ameliorate its symptoms in infants and young children is urgently needed in both developing and developed countries. Rotavirus VP7 serotypes G1, G2, G3, and G4 have been well established to be of epidemiologic importance worldwide. Recently, serotype G9 has emerged as the fifth globally common type of rotavirus of clinical importance. Sequence analysis of the VP7 gene of various G9 isolates has demonstrated the existence of at least three phylogenetic lineages. The goal of our study was to determine the relationship of the phylogenetic lineages to the neutralization specificity of various G9 strains. We generated eight single VP7 gene substitution reassortants, each of which bore a single VP7 gene encoding G9 specificity of one of the eight G9 strains (two lineage 1, one lineage 2 and five lineage 3 strains) and the remaining 10 genes of bovine rotavirus strain UK, and two hyperimmune guinea pig antisera to each reassortant, and we then analyzed VP7 neutralization characteristics of the eight G9 strains as well as an additional G9 strain belonging to lineage 1; the nine strains were isolated in five countries. Antisera to lineage 1 viruses neutralized lineage 2 and 3 strains to at least within eightfold of the homotypic lineage viruses. Antisera to lineage 2 virus neutralized lineage 3 viruses to at least twofold of the homotypic lineage 2 virus; however, neutralization of lineage 1 viruses was fourfold (F45 and AU32) to 16- to 64-fold (WI61) less efficient. Antisera to lineage 3 viruses neutralized the lineage 2 strain 16- to 64-fold less efficiently, the lineage 1 strains F45 and AU32 8- to 128-fold less efficiently, and WI61 (prototype G9 strain) 128- to 1024-fold less efficiently than the homotypic lineage 3 viruses. These findings may have important implications for the development of G9 rotavirus vaccine candidates, as the strain with the broadest reactivity (i.e., a prime strain) would certainly be the ideal strain for inclusion in a vaccine.  相似文献   

3.
A 4-year (1996-2000) survey of rotavirus infection involving 2,218 diarrheal fecal specimens of children collected from five regions of Japan was conducted. A total of 642 (28.9%) specimens were found to be rotavirus positive. A changed prevalence pattern of rotavirus G serotype was found with an increase of G9 and G2 and a decrease of G1, although G1 remained the prevailing serotype. Serotype G9 was unexpectedly determined to be the prevailing serotype in Sapporo (62.5%) and Tokyo (52.9%) in 1998-1999, and in Saga (78.4%) in 1999-2000. G9 strains isolated from 1998-1999 belonged to the P[8]-NSP4-Wa-group with long RNA pattern, while, G9 strains isolated from 1999-2000 belonged to three groups, the P[8]-NSP4-Wa-group with long RNA pattern, the P[4]-NSP4-KUN-group with short RNA pattern and a mixed-type group (P[4]/P[8]-NSP4-KUN/Wa-group with long RNA pattern). Both sequence and immunological analysis of VP7 revealed that the G9 strains from 1999-2000 were much more closely related to the G9 strains isolated worldwide in the 1990s, including G9 strains found in Thailand in 1997. However, the G9 strains from 1998-1999 were distinct from these and more closely related to the G9 prototype strains F45, AU32 and WI61 discovered in Japan and the US in the 1980s. Thus the G9 strains isolated in 1998-1999 had progenitors common to the G9 prototype strains, while the strains isolated in 1999-2000 did not directly evolve from them but were related to global G9 strains that have emerged in recent years. These data supported our previous report that G9 rotavirus might exist as two or more subtypes with diverse RNA patterns, P-genotype and NSP4 genogroup combinations (Y.M. Zhou et al., J. Med. Virol. 65: 619-628, 2001) and suggested that G9 rotavirus prevalent in Japan during two successive years belonged to different subtypes. The nucleotide sequences presented in this paper were submitted to DDBJ, EMBL and GenBank nucleotide sequence databases. The accession numbers are: 00-Ad2863VP7 (AB091746), 00-OS2986VP7 (AB091747), 00-SG2509VP7 (AB091748), 00-SG2518VP7 (AB091749), 00-SG2541 (AB091750), 00-SG2864 (AB091751), 00-SP2737VP7 (AB091752), 99-SP1542VP7 (AB091753), 99-SP1904VP7 (AB091754), 99-TK2082VP7 (AB091755) and 99-TK2091VP7 (AB091756).  相似文献   

4.
【背景】人A组轮状病毒(Rotavirus Group A,RVA)是婴幼儿胃肠炎的主要病原体及发展中国家婴幼儿死亡的重要原因,目前无特效药物治疗,疫苗预防是唯一可行的预防感染方法。外衣壳蛋白VP7和VP4是疫苗设计的主要靶点,针对该基因加强RVA地方株分子流行病学监测十分必要。【目的】对锦州地方流行RVA株VP7和VP4基因进行型别鉴定和序列特征分析。【方法】收集锦州地区2018-2020年RVA感染腹泻患儿的粪便标本,提取病毒RNA,通过RT-PCR扩增VP7、VP4基因片段并测序,得到7株RVA VP7和VP4序列。使用在线基因分型工具Rota C V2.0对测序结果进行分型分析。应用BLAST、DNAStar、MEGA X、Bio Edit等生物软件与临床流行株及疫苗株进行系统发育分析及氨基酸序列比对分析。【结果】分型结果表明7株锦州地方株均为G9P[8]型,系统发育分析证实其VP7和VP4基因分别属于G9-Ⅵ和P[8]-3谱系,核苷酸序列相似性分别为99.32%-100%与99.41%-100%。JZ株VP7与疫苗株Rotavac和Rotasiil相比,在抗原表位区7-1a、7-1b、7-2中分别存在4个和3个氨基酸替换。JZ株VP4与疫苗株Rotarix和Rota Teq VP4氨基酸序列相比,发现7个和4个氨基酸替换,位于抗原表位区8-1和8-3。【结论】2018-2020年在辽宁锦州地区检测到7株G9P[8]型RVA株,VP7和VP4序列相似性高于99%,G9P[8]型可能是辽宁省锦州地区2018-2020年婴幼儿轮状病毒腹泻的主要流行基因型之一。与同基因型疫苗株比较,位于JZ株VP7和VP4抗原表位区的氨基酸位点差异对于野毒株免疫逃逸机制的研究具有意义。  相似文献   

5.
6.
最近在亚洲首次发现并报道了感染人的G5型人A组轮状病毒LL36755株,为进一步探讨其进化来源,克隆了G5型人A组轮状病毒LL36755株的VP4、VP6、NSP4编码基因,并分析其基因序列的分子特征。结果发现卢龙株LL36755为罕见的G5P[6]型,其VP6的亚群为SGⅡ型,NSP4的基因型为B型。系统进化树分析表明,卢龙株LL36755的VP7、VP4编码基因与猪来源的毒株关系密切,而VP6、NSP4编码基因与人来源的毒株紧密相联系。可以推断新的人腹泻A组轮状病毒LL36755株是猪的VP7,VP4编码基因与人的VP6,NSP4编码基因的自然重组;而且该毒株不是G5的原型,很可能是人类轮状病毒与猪轮状病毒毒株的自然重组后逐步进化而来。  相似文献   

7.
人A组轮状病毒(Human rotavirus,HRV)是引起世界范围婴幼儿重症腹泻的最主要病原,也是导致发展中国家婴幼儿死亡的主要病因之一[1-3],世界卫生组织统计每年大约引起611 000婴儿和儿童死亡,特别是发展中国家[4].HRV感染广泛,且改善营养状况和卫生条件对HRV发病危险影响不大,因此在发达国家和发展中国家HRV感染率接近.HRV引起的腹泻至今无特效药,发展疫苗对控制HRV感染的作用就显得特别突出.  相似文献   

8.
在我国腹泻患儿中发现G9型轮状病毒感染   总被引:11,自引:1,他引:10  
钱渊  关德华 《病毒学报》1994,10(3):263-267
  相似文献   

9.
A组轮状病毒是引起婴幼儿秋冬季病毒性腹泻的主要病原.目前没有有效的治疗药物,应用安全而有效的疫苗是控制重症腹泻的首要措施.对当地A组轮状病毒流行株的主要中和抗原VP7的编码基因进行遗传变异分析,可以为疫苗的应用和开发提供有益的指导.利用ELISA方法对长春地区1999~2005年的腹泻患儿标本检测A组轮状病毒,RT-PCR方法对阳性标本进行G血清分型,发现长春地区2001年以后流行的轮状病毒以G3型血清为主.选取1999~2005年的G3型轮状病毒标本31份,对其VP7基因进行扩增、克隆、测序,经过计算机分析比对,31株G3型轮状病毒VP7基因核苷酸序列没有显著差异.同一流行季节的毒株具有较相似的遗传变异特征.在2003年轮状病毒流行季节内,有6株G3型分离株的VP7基因在碱基1 038位置上出现一个碱基缺失.毒株发生在A、B、C三个高变区的碱基突变,位点相同或者位置临近.2002年以后毒株的基因突变增加,非高变区的碱基变异增加,这可能有助于维持G3型轮状病毒成为流行株.有规律的变异多发生在高变区,但是非高变区的非连续性变异的增加值得引起注意.  相似文献   

10.
In a retrospective study of archival diarrheal stool samples collected from 1974 to 1991 at Children's Hospital National Medical Center, Washington, DC, we detected three genotype G9P[8] viruses in specimens collected in 1980, which represented the earliest human G9 viruses ever isolated. The VP7 genes of two culture-adapted 1980 G9 viruses were phylogenetically related closely to the lineage 2 G9 virus VP7 gene. Unexpectedly, however, the VP7s of the 1980 G9 viruses were more closely related serotypically to lineage 3 VP7s than to lineage 2 VP7, which may be supported by amino acid sequence analyses of the VP7 proteins.  相似文献   

11.
A rotavirus sample collection from 19 consecutive years was used to investigate the heterogeneity and the dynamics of evolution of G1 rotavirus strains in a geographically defined population. Phylogenetic analysis of the VP7 gene sequences of G1P[8] human rotavirus strains showed the circulation of a heterogeneous population comprising three lineages and seven sublineages. Increases in the circulation of G1 rotaviruses were apparently associated with the introduction of novel G1 strains that exhibited multiple amino acid changes in antigenic regions involved in rotavirus neutralization compared to the strains circulating in the previous years. The emergence and/or introduction of G1 antigenic variants might be responsible for the continuous circulation of G1 rotaviruses in the local population, with the various lineages and sublineages appearing, disappearing, or cocirculating in an alternate fashion under the influence of immune-pressure mechanisms. Sequence analysis of VP4-encoding genes of the G1 strains revealed that the older strains were associated with a unique VP4 lineage, while a novel VP4 lineage emerged after 1995. The introduction of human rotavirus vaccines might alter the forces and balances that drive rotavirus evolution and determine the spread of novel strains that are antigenically different from those included in the vaccine formulations. The continuous emergence of VP7-VP4 gene combinations in human rotavirus strains should be taken into consideration when devising vaccination strategies.  相似文献   

12.
13.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

14.
An unusual rotavirus strain, SKT-27, with the G6P[14] genotypes (RVA/Human-wt/THA/SKT-27/2012/G6P[14]), was identified in a stool specimen from a hospitalized child aged eight months with severe diarrhea. In this study, we sequenced and characterized the complete genome of strain SKT-27. On whole genomic analysis, strain SKT-27 was found to have a unique genotype constellation: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The non-G/P genotype constellation of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) is commonly shared with rotavirus strains from artiodactyls such as cattle. Phylogenetic analysis indicated that nine of the 11 genes of strain SKT-27 (VP7, VP4, VP6, VP2-3, NSP1, NSP3-5) appeared to be of artiodactyl (likely bovine) origin, while the remaining VP1 and NSP2 genes were assumed to be of human origin. Thus, strain SKT-27 was found to have a bovine rotavirus genetic backbone, and thus is likely to be of bovine origin. Furthermore, strain SKT-27 appeared to be derived through interspecies transmission and reassortment events involving bovine and human rotavirus strains. Of note is that the VP7 gene of strain SKT-27 was located in G6 lineage-5 together with those of bovine rotavirus strains, away from the clusters comprising other G6P[14] strains in G6 lineages-2/6, suggesting the occurrence of independent bovine-to-human interspecies transmission events. To our knowledge, this is the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia. Our observations will provide important insights into the origin of G6P[14] strains, and into dynamic interactions between human and bovine rotavirus strains.  相似文献   

15.
A prospective study was performed to determine the molecular characteristics of rotaviruses circulating among children aged <5 years in Bhutan. Stool samples were collected from February 2010 through January 2011 from children who attended two tertiary care hospitals in the capital Thimphu and the eastern regional headquarters, Mongar. The samples positive for rotavirus was mainly comprised genotype G1, followed by G12 and G9. The VP7 and VP4 genes of all genotypes clustered mainly with those of neighboring countries, thereby indicating that they shared common ancestral strains. The VP7 gene of Bhutanese G1 strains belonged to lineage 1c, which differed from the lineages of vaccine strains. Mutations were also identified in the VP7 gene of G1 strains, which may be responsible for neutralization escape strains. Furthermore, we found that lineage 4 of P[8] genotype differed antigenically from the vaccine strains, and mutations were identified in Bhutanese strains of lineage 3. The distribution of rotavirus genotypes varies among years, therefore further research is required to determine the distribution of rotavirus strain genotypes in Bhutan.  相似文献   

16.
Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Children''s Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs.  相似文献   

17.
The predominant rotavirus electropherotypes (e-types) during 17 epidemic seasons (1980 through 1997) in Finland were established, and representative virus isolates were studied by nucleotide sequencing and phylogenetic analysis. The virus isolates were either P[8]G1 or P[8]G4 types. The G1 and G4 strains formed one G1 lineage (VP7-G1-1) and one G4 lineage, respectively. Otherwise, they belonged to two P[8] lineages (VP4-P[8]-1 and -2) unrelated to their G types. Phylogenetic analysis of partial sequences of all 11 RNA segments obtained from the strains also revealed genetic diversity among gene segments other than those defining P and G types. With the exception of segments 1, 3, and 10, the sequences of the other segments could be assigned to 2 to 4 different genetic clusters. The results of this study suggest that, in addition to the RNA segments encoding VP4 and VP7, the other RNA segments may segregate independently as well. In total, the 9 predominant e-types represented 7 different RNA segment combinations when the phylogenetic clusters of their 11 genes were determined. The extensive genetic diversity and number of e-types among rotaviruses are best explained by frequent genetic reassortment.  相似文献   

18.
One major mechanism by which Rotavirus A (RVA) evolves is genetic reassortment between strains with different genotype constellations. However, the parental strains of the reassortants generated have seldom been identified. Here, the whole genome of two suspected reassortants, RVA/Human‐wt/VNM/SP127/2013/G1P[4] and RVA/Human‐wt/VNM/SP193/2013/G1P[4], with short RNA electropherotypes were examined by Illumina MiSeq sequencing and their ancestral phylogenies reconstructed. Their genotype constellation, G1‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2, indicated that they were G1 VP7 mono‐reassortants possessing DS‐1‐like genetic backbones. The two strains were ≧99.7% identical across the genome. While their VP7 genes were ≧99.7 identical to that of a Wa‐like strain RVA/Human‐wt/VNM/SP110/2012/G1P[8] which co‐circulated during the 2012/2013 season, 10 genes were ≧99.8% identical to that of the DS‐1‐like strains RVA/Human‐wt/VNM/SP015/2012/G2P[4] (and SP108) that co‐circulated during the season. The identities were consistent with the phylogenetic relationships observed between the genes of the reassortants and those of the afore‐mentioned strains. Consequently, the G1P[4] strains appear to have been generated by genetic reassortment between SP110‐like and SP015‐like strains. In conclusion, this study provides robust molecular evidence for the first time that G1P[4] strains detected in Hanoi Vietnam were generated by inter‐genogroup reassortment between co‐circulating G1P[8] and G2P[4] strains within the same place and season.
  相似文献   

19.
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013–2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014–2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.  相似文献   

20.
A rare human rotavirus, G3P[9] strain RVA/Human-tc/KOR/CAU12-2-51/2013/G3P[9], was isolated from the stool of a 9-year-old female hospitalized with acute watery diarrhea in August 2012 in South Korea using a cell culture system, and its genome was analyzed. The complete genomic constellation of the CAU12-2-51 strain revealed a novel genotype constellation for human rotavirus, G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. Phylogenetic analysis revealed that the CAU12-2-51 strain originated from feline- and bovine-like reassortment strains. The genes encoding VP4, VP7, NSP1, NSP3, NSP4, and NSP5 were related to human/feline-like and feline rotavirus strains, whereas the remaining five genes encoding VP1, VP2, VP3, VP6, and NSP2 were related to the human/bovine-like and bovine rotavirus strains. This novel strain was identified for the first time, providing evidence of feline/bovine-to-human transmission of rotavirus. The data presented herein provide information regarding rotavirus diversity and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号