首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of simultaneous mitotic activity, electrical transmembrane potential (Em), and cell density levels in both 3T3 and Chinese hamster ovary (CHO) cell cultures reveal that a 5- to 6-fold increase in the Em level is associated with development of mitotic arrest at saturation densities. This rise occurs both in confluent monolayers and in interior areas of isolated colonies, and is independent of the rate at which confluence is attained. The Em rise is accompanied by a substantial decrease in intracellular Na. Electron microscopy of saturated CHO monolayer sections shows from 46 to 63% of the cell surfaces to be in close apposition (<300 Å spacing). These results for contact inhibited cultures support the hypothesis that mitotic activity may be functionally coupled with the Em level and associated ionic concentration levels. It is suggested that contact inhibition of mitosis may result from a reduction in synthesis of mitogenically essential RNA following a decrease in intracellular Na produced by contact-induced alteration of surface ion-transport activity.  相似文献   

2.
The membrane potential measured by intracellular electrodes, Em, is the sum of the transmembrane potential difference (E1) between inner and outer cell membrane surfaces and a smaller potential difference (E2) between a volume containing fixed charges on or near the outer membrane surface and the bulk extracellular space. This study investigates the influence of E2 upon transmembrane ion fluxes, and hence cellular electrochemical homeostasis, using an integrative approach that combines computational and experimental methods. First, analytic equations were developed to calculate the influence of charges constrained within a three-dimensional glycocalyceal matrix enveloping the cell membrane outer surface upon local electrical potentials and ion concentrations. Electron microscopy confirmed predictions of these equations that extracellular charge adsorption influences glycocalyceal volume. Second, the novel analytic glycocalyx formulation was incorporated into the charge-difference cellular model of Fraser and Huang to simulate the influence of extracellular fixed charges upon intracellular ionic homeostasis. Experimental measurements of Em supported the resulting predictions that an increased magnitude of extracellular fixed charge increases net transmembrane ionic leak currents, resulting in either a compensatory increase in Na+/K+-ATPase activity, or, in cells with reduced Na+/K+-ATPase activity, a partial dissipation of transmembrane ionic gradients and depolarization of Em.  相似文献   

3.
The binding of membrane potential cationic probes was studied on phospholipidic liposomes by equilibrium dialysis and microelectrophoresis. Surface binding of lipophilic cations (benzyltributylammonium or tetraphenylphosphonium) appears to be the major accumulation mechanism in liposomes and simulates the existence of a negative transmembrane potential (Em), in absence of any transmembrane ionic gradient. Furthermore, this apparent negative potential has a classical response with regard to common Em effectors, namely a depolarization induced by KCl or FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). The relevance of these results to the study of transtonoplast potential difference on isolated vacuoles was investigated. Tetraphenylphosphonium was shown to bind to the tonoplast, the essential features of binding and interaction with Em effectors being similar in vacuoles and liposomes. Therefore the assumption of negligible binding of cationic probe to vacuoles, classically admitted in determinations of vacuolar Em using lipophilic cations, is untenable.  相似文献   

4.
Inoculation with Rhizobium japonicum or R. meliloti reduced the electrical transmembrane potential (Em) of soybean (Glycine max [L.] Merr.) root cells within 1 day. The response could be attributed to altered diffusion potential (ED). Em values return to control levels by the second day after inoculation, but again were reduced in R. meliloti-inoculated tissue on the seventh day. Increased concentrations of sodium phosphate in the perfusion solution magnified the effects of inoculation on Em. Neither heat-killed rhizobia nor living cells of Pseudomonas fluorescens elicited the response. The Em and ED of nodule cells were nearly 20% lower than corresponding values from adjacent cortical cells of the root.  相似文献   

5.
A large number of experimental observations suggests that a significant correlation may exist between the level of the electrical transmembrane potential difference in somatic cells and the intensity of their mitotic activity. The present paper, after review of pertinent experimental background data, assumes that a functional relationship between potential level and mitotic activity does in fact exist and, invoking the precepts of classical membrane potential theory, proceeds with the formulation of a basic theory of mitosis control wherein the intracellular ionic conditions associated with various levels of the potential difference act to regulate preparation for DNA synthesis and other essential mitotic preparations. The theory links the activity of the potential-generation mechanisms of the cell surface complex, and hence mitogenic activity, with cellular metabolism and with external environmental influences through an explicit system of interacting feedback circuits. Inherent in the overall theoretical development is the formulation of a unified theory of the cytogenetic etiology and maintenance of the malignant state. Additional specific experimental evidence is cited in support of the theoretical concepts developed.  相似文献   

6.
Viable cell samples containing 93% pure granulocytes were obtained from human blood using the techniques of dextran sedimentation followed by centrifugal elutriation. The resting transmembrane potential (Em) of human granulocytes was estimated using the fluorescent lipophilic cation, Di-S-C3(5), from the null point for potassium—i.e., the external K concentration at which there is no change in Em in response to valinomycin (a K ionophore). The Em of human granulocytes, as calculated from the Nernst potential for K at the null point, is approximately – 100 mV. Data indicate that this large transmembrane potential is due in part to the presence of an electrogenic Na-K pump in human granulocytes which is stimulated by external potassium and inhibited by ouabain.  相似文献   

7.
Minichromosome maintenance (MCM) proteins are essential DNA replication factors conserved among eukaryotes. MCMs cycle between chromatin bound and dissociated states during each cell cycle. Their absence on chromatin is thought to contribute to the inability of a G2 nucleus to replicate DNA. Passage through mitosis restores the ability of MCMs to bind chromatin and the ability to replicate DNA. In Drosophila early embryonic cell cycles, which lack a G1 phase, MCMs reassociate with condensed chromosomes toward the end of mitosis. To explore the coupling between mitosis and MCM–chromatin interaction, we tested whether this reassociation requires mitotic degradation of cyclins. Arrest of mitosis by induced expression of nondegradable forms of cyclins A and/or B showed that reassociation of MCMs to chromatin requires cyclin A destruction but not cyclin B destruction. In contrast to the earlier mitoses, mitosis 16 (M16) is followed by G1, and MCMs do not reassociate with chromatin at the end of M16. dacapo mutant embryos lack an inhibitor of cyclin E, do not enter G1 quiescence after M16, and show mitotic reassociation of MCM proteins. We propose that cyclin E, inhibited by Dacapo in M16, promotes chromosome binding of MCMs. We suggest that cyclins have both positive and negative roles in controlling MCM–chromatin association.  相似文献   

8.
The cell membrane potential of cultured Chinese hamster cells is known to increase at the start of the S phase. The putative role of the cell membrane potential as a regulator of cell proliferation was examined by following the cell cycle traverse of synchronized Chinese hamster cells in the presence or absense of high exogenous levels of potassium. An increase in external potassium levels results in a depressed membrane potential and a reduced rate of cell proliferation. A potassium concentration of 115 mM was used in experiments with synchronized cells since at that level cell proliferation is almost completely halted, recovery of growth is rapid and complete, and the membrane potential is reduced to a level well below that normally found in cells in the G1 phase. A mitotic population was divided into four aliquots and plated in either control medium or medium containing 115 mM K+. Cells placed directly into high K+ medium were retarded in their exit from mitosis and displayed a delayed and abnormal entry into the S phase. If control medium was added after two hours, cell cycle traverse was normal, but delayed by two hours compared to control cells. If the mitotic cells were plated directly into control medium and two hours later were shifted to high K+ medium, the cells entered the S phase in the absence of the normally observed increase in membrane potential and proceeded to the next mitosis normally. It was concluded that the increase in membrane potential observed at the start of the S phase in isolated synchronized cells is not a requirement for the initiation of DNA synthesis. In addition, sensitivity to the high potassium regimen was found at two different times during the cell cycle. In one case, cells were impeded in their transit through mitosis. Such cells displayed an altered chromosome structure which may account for the partial mitotic block. In the second case, synchronized cells displayed a sensitivity to the high potassium regimen in early G1 which appeared to be separate from the block in mitosis and independent of a change in the membrane potential.  相似文献   

9.
In this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole. Furthermore, EDD siRNA reduced mitotic cell viability and, in nocodazole-treated cells, increased expression of the promitotic progression protein cell division cycle 20 (CDC20). Copurification studies also identified physical interactions with CDC20, BUBR1, and other components of the SAC. Taken together, these observations highlight the potential role of EDD in regulating mitotic progression and the cellular response to perturbed mitosis.  相似文献   

10.
Analysis of signalling events by classical biochemical approaches is limited as the outcome is an averaged readout for protein activation of a single protein within a cell population. This is a clear restriction when addressing signalling events in mixed populations or subpopulations of cells. By combining flow cytometry with a panel of phosphospecific antibodies against several signal molecules simultaneously in a multi-parameter phospho flow cytometry analysis it is possible to obtain a higher level of understanding of the signal transduction dynamics at a single cell level. In addition, analysis of mixed cell populations makes it possible to study cells ex vivo in a state more closely resembling the in vivo situation. The multimeric analysis yields information on combinations of signals turned on and off in specific settings such as disease (signal nodes) that can be used for biomarker analysis and for development of drug screening strategies. Prostaglandin E2 (PGE2) is known to signal through four G-protein coupled transmembrane receptors, EP1-4, activating a multitude of potential signalling pathways. The analysis of the PGE2 signalling network elicited by activation of the four EP receptors in lymphoid cells revealing several signalling nodes is reviewed as an example.  相似文献   

11.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

12.
Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.  相似文献   

13.
The effect of CN and N2 on the electrical membrane potential (Em) was compared with that of CN on the ATP levels in cotyledons of Gossypium hirsutum and in Lemna gibba L. In mature cotton tissue, CN depolarized Em to the energy-independent diffusion potential (ED) in the dark. In the light Em recovered transiently. The same was observed in leaves of Nicotiana, Avena, Impatiens, Kalanchoë, and in Lemna. In contrast, in young cotton cotyledons and tobacco leaves and, to a large extent, in +sucrose-grown Lemna, Em was depolarized to ED also in the light in a similar way as in the dark.

In Lemna grown without sucrose, the energy-dependent component of Em was only partially depolarized by CN in dark or light. Cyanide plus salicylhydroxamic acid completely reduced Em to ED, abolished respiration and photosynthesis, and severely diminished the ATP level. This suggests the operation of a CN-insensitive respiration in uninjured Lemna. The initial CN-induced decay of the ATP level in cotton and Lemna was more rapid than the decay of Em. CN-induced oscillations of the ATP level were followed by similar but slower oscillations of Em. This supports the view of a general dependence of Em on ATP. Discrepancies between inhibitor-induced changes of Em and ATP levels are suggested to result from additional regulation of Em by the cytoplasmatic pH value.

A comparison of ED in young and mature cotton cotyledons in the dark and in the light suggests that in growing young cotyledons the different effect of CN in the light is due to a less effective photosynthesis together with high mitochondrial respiration. In Lemna and in mature cotton tissue, Em in the light is maintained by noncyclic photophosphorylation and photosystem II, which is only partly inhibited by CN, thus resulting in an incomplete depolarization and recovery of Em. Complete inhibition of photosynthetic O2 evolution and membrane depolarization by CN plus salicylhydroxamic acid are suggested to result from photooxidation.

  相似文献   

14.
In the rat small bowel mucosa significant variation was found in both the labelling and the mitotic indices with time of day. The zenith and the nadir of labelling and mitotic activity coincided at 15.00 and 02.00 hours respectively. Small changes were found in the ‘cut-off’ position, but this variation in proliferative compartment size was insufficient to account for the comparatively wider fluctuations in proliferative indices. Measurements of the rate of entry into mitosis, using metaphase arrest with vincristine at three widely separated times during the day, showed no significant change. Changes in the growth fraction or in the birth rate as measured cannot account for diurnal variation in the proliferative activity of the small bowel mucosa. We propose a hypothesis which involves diurnal fluctuations in the transit times through G1 and through G2.  相似文献   

15.
Correct cell fate choice is crucial in development. In post-embryonic development of the hermaphroditic Caenorhabitis elegans, distinct cell fates must be adopted in two diverse tissues. In the germline, stem cells adopt one of three possible fates: mitotic cell cycle, or gamete formation via meiosis, producing either sperm or oocytes. In the epidermis, the stem cell-like seam cells divide asymmetrically, with the daughters taking on either a proliferative (seam) or differentiated (hypodermal or neuronal) fate. We have isolated a novel conserved C. elegans tetratricopeptide repeat containing protein, TRD-1, which is essential for cell fate determination in both the germline and the developing epidermis and has homologs in other species, including humans (TTC27). We show that trd-1(RNAi) and mutant animals have fewer seam cells as a result of inappropriate differentiation towards the hypodermal fate. In the germline, trd-1 RNAi results in a strong masculinization phenotype, as well as defects in the mitosis to meiosis switch. Our data suggests that trd-1 acts downstream of tra-2 but upstream of fem-3 in the germline sex determination pathway, and exhibits a constellation of phenotypes in common with other Mog (masculinization of germline) mutants. Thus, trd-1 is a new player in both the somatic and germline cell fate determination machinery, suggestive of a novel molecular connection between the development of these two diverse tissues.  相似文献   

16.
Summary Cell distribution in different compartments of the cell cycle (G1, early, middle and late S, G2 and mitosis) has been studied during treatment with 0.5 mM 5-aminouracil and recovery inAllium cepa L. root meristems by cytophotometric and autoradiographic methods. At optimum conditions for obtaining mitotic synchronization, 5-aminouracil gives rise to cell accumulation in the S period, preferentially in its middle zone where the relative DNA content is 2.8 ± 0.1 C. After a 14-hour treatment 33% of the proliferative population is accumulated in this particular region.During recovery, a drastic reduction of the S phase and a clear increase of the mitotic frequency are the most important events observed. Apparently, the removal of the drug frees the blockage and the accumulated cells complete their interphase making up the mitotic wave.  相似文献   

17.
The somatic and gonad productions of the cirolanid isopod Excirolana armata were analyzed by taking monthly samples from December 2003 to November 2005 on Una beach, S?o Paulo state (24°S), southeastern Brazil. Sampling was performed along three fixed transects established from the base of the foredunes to the waterline. Weight-specific growth rate was used to estimate the E. armata somatic production for 2004 and 2005, separately. The gonad production was estimated based on the monthly reproductive potential (mean number of eggs/embryos per female × monthly abundance of ovigerous females with near-release broods) for 2004. The annual somatic production of E. armata population varied from 15.57 to 17.25?g AFDW m?1?year?1 and the somatic production/biomass ratio (P s/B) from 3.55 to 3.14?year?1 for 2004 and 2005, respectively. The P s/B ratios were higher for males (4.02 and 3.19?year?1 for 2004 and 2005) than for females (3.10?year?1 for both years). The annual gonad production (P g?=?1.07?g AFDW m?1?year?1) contributed about 15 and 6% to the total production (P s?+?P g) of females and the population, respectively. The proportion of gonad to somatic production of females (P g/P s) increased with individual size (ca 90% in the 7.5?mm size class), and the annual weight-specific gonad production (P g/B ratio) was estimated to 0.24?year?1. The high P s/B ratios estimated for E. armata derive from the fast growth of individuals and show the importance of this population to the energy flow on Una beach ecosystem. However, the low percentage of juveniles verified in this population and in other studies of populations of the genus Excirolana is discussed as an important source of underestimation of P s/B ratio.  相似文献   

18.
19.
20.
Western blotting studies revealed that connexin43 (Cx43), one of the major gap junction proteins in human vascular endothelial cells, is posttranslationally modified during mitosis. This mitosis-specific modification results in a Cx43 species that migrates as a single protein band and was designated Cx43m. Cx43m was shown to be the result of additional Ser/Thr phosphorylation as indicated by: (a) the increased gel mobility induced by both alkaline phosphatase and the Ser/ Thr-specific protein phosphatase-2A (PP2A) and (b) the removal of virtually all 32Pi from Cx43m by PP2A. Immunofluorescent confocal microscopy of mitotic cells revealed that Cx43 is intracellularly located, while in nonmitotic cells Cx43 is located at regions of cell–cell contact. Dye coupling studies revealed that mitotic endothelial cells were uncoupled from each other and from nonmitotic cells. After cytokinesis, sister cells resumed cell coupling independent of de novo protein synthesis. The mitosis-specific phosphorylation of Cx43 correlates with the transient loss of gap junction intercellular communication and redistribution of Cx43, suggesting that a protein kinase that regulates gap junctions is active in M-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号