首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the "long" alpha-neurotoxin alpha-cobratoxin was refined to an R-factor of 19.5% using 3271 x-ray data to 2.4-A resolution. The polypeptide chain forms three loops, I, II, III, knotted together by four disulfide bridges, with the most prominent, loop II, containing another disulfide close to its lower tip. Loop I is stabilized by one beta-turn and two beta-sheet hydrogen bonds; loop II by eight beta-sheet hydrogen bonds, with the tip folded into two distorted right-handed helical turns stabilized by two alpha-helical and two beta-turn hydrogen bonds; and loop III by hydrophobic interactions and one beta-turn. Loop II and one strand of loop III form an antiparallel triple-pleated beta-sheet, and tight anchoring of the Asn63 side chain fixes the tail segment. In the crystal lattice, the alpha-cobratoxin molecules dimerize by beta-sheet formation between strands 53 and 57 of symmetry-related molecules. Because such interactions are found also in a cardiotoxin and alpha-bungarotoxin, this could be of importance for interaction with acetylcholine receptor.  相似文献   

2.
Two toxins from the venom of Naja mossambica mossambica, neurotoxin I and cardiotoxin VII4, were investigated in aqueous solution by high-resolution 1H nuclear magnetic resonance (NMR) techniques at 360 MHz. The spectral characterization of the proteins included determination of the number of slowly exchanging amide protons which can be observed in 2H2O solution, measurement of the amide proton chemical shifts and exchange rates, characterization of the aromatic spin systems and the internal mobilities of aromatic rings, and studies of the pH dependence of the NMR spectra. For numerous resonances of labile and non-labile protons quite outstanding pH titration shifts were observed. It is suggested that these NMR parameters provide a useful basis for comparative structural studies of different proteins in the large group of homologous snake toxins. As a first application the NMR data presently available in the literature on neurotoxin II from Naja naja oxiana, toxin alpha from Naja nigricollis and erabutoxin a and b from Laticauda semifasciata have been used to compare these three proteins with neurotoxin I from Naja mossambica mossambica. This preliminary comparative study provides evidence that the same type of spatial structure prevails for these four homologous neurotoxins and that the folding of the backbone corresponds quite closely to that observed in the crystal structure of erabutoxin b. A second application is the comparison of cardiotoxin VII4 from Naja mossambica mossambica with the neurotoxins. The experimental data indicate that the folding of the polypeptide backbone is closely similar, but that the cardiotoxin molecule is markedly more flexible than the neurotoxins.  相似文献   

3.
The pharmacological properties of three phospholipases A2 (CM-I, CM-II and CM-III) purified from Naja mossambica mossambica venom were studied. The order of their catalytic and indirect hemolytic potencies was CM-I = CM-II greater than CM-III. Among them, only CM-III had a direct hemolytic action on the guinea-pig RBC, which was greatly inhibited by heparin. In the chick biventer cervicis nerve- muscle preparation, both CM-II and CM-III caused neuromuscular blockade with a gradual contracture and a decreased sensitivity to ACh and KCl, whereas no complete neuromuscular block was observed with CM-I up to 30 micrograms/ml. In the mouse phrenic nerve-diaphragm preparation, these three PLA2s abolished twitches evoked by indirect stimulation earlier than those by direct stimulation. Contracture was also produced by CM-II and CM-III. However only the latter was inhibited by pretreatment with heparin. These PLA2s caused myonecrosis in the hind-leg muscle of the mouse when injected intramuscularly. From these results, it is concluded that all of these PLA2s are both neurotoxic and myotoxic.  相似文献   

4.
5.
Using the previously reported sequence-specific 1H-NMR assignments, structural constraints for the cardiotoxin CTXIIb from Naja mossambica mossambica were collected. These include distance constraints from nuclear Overhauser enhancement measurements both in the laboratory and in the rotating frame, dihedral angle constraints derived from spin-spin coupling constants, and constraints from hydrogen bonds and disulfide bridges. Structure calculations with the distance geometry program DISMAN confirmed the presence of the previously identified antiparallel beta-sheets formed by residues 1-5 and 10-14, and by 20-27, 35-39 and 49-55, and established the nature of the connections between the individual beta-strands. These include a right-handed crossover between the two peripheral strands in the triple-stranded beta-sheet, and a type I tight turn immediately preceding the beta-strand 49-55. The spatial arrangement of the polypeptide backbone in the solution structure of CTXIIb is closely similar to that in the crystal structure of the homologous cardiotoxin VII4 from the same species. In an Appendix the origin of the large pH dependence of two amide proton chemical shifts in CTXIIb is explained.  相似文献   

6.
Sequence-specific assignments of the 1H-nuclear magnetic resonance (NMR) spectra of the cardiotoxins CTXIIa and CTXIIb from Naja mossambica mossambica were obtained using two-dimensional NMR experiments at 500 MHz and the independently determined amino acid sequences. Assignments were obtained from data at 25 degrees C and 45 degrees C for all but one backbone proton of the 60 residues in each protein. Complete or partial assignments are also reported for the side-chain protons. These assignments supercede those published previously for the toxin preparation VII2 [Hosur, R. V., Wider, G. & Wüthrich K. (1983) Eur. J. Biochem. 130, 497-508]. The 1H/2H-exchange kinetics were measured in 2H2O at 20 degrees C for the amide protons and the N-terminal amino group. These and additional NMR data enabled the determination of the secondary structure in aqueous solution, which is virtually identical in CTXIIa and CTXIIb. Both proteins contain a short double-stranded antiparallel beta-sheet comprising the residues 2-4 and 11-13, and a triple-stranded antiparallel beta-sheet consisting of the residues 20-26, 35-39, and 49-55. The two peripheral strands of the triple-stranded beta-structure were found to be connected by a right-handed cross-over, and the locations of several tight turns were also identified.  相似文献   

7.
8.
A model of rabbit muscle phosphoglucomutase was refined at 2.7-A resolution by using two heavy atom derivatives for initial phasing and standard refinement procedures, including molecular replacement averaging about a 2-fold axis and dynamic simulation: final R-factor, 0.223 (no solvent modeling); RMS deviation from standard bond lengths and angles, 0.020 A and 3.6 degrees, respectively (all 8658 nonhydrogen atoms plus 36,953 reflections (F/sigma greater than or equal to 3) between 8- and 2.7-A resolutions); average of individually refined atomic B-factors, 40 A2 (all atoms) and 30 A2 (all atoms in domains I-III). An H-bonding scheme with 538 main chain H-bonds for the two monomers in the asymmetric unit and probable ligands for six uranyl ions in one heavy atom derivative is given. The monomer contains 42 strands/helices arranged into four alpha/beta-domains. Each of the first three domains contains an alpha 3 beta 4 alpha 1 motif, where the topology of beta 4 is 2,1,3,4:[arrows: see text] which is a topology not encountered in an extensive search among known protein structures. A spatial similarity is observed between corresponding residues in the three repetitions of this motif per monomer, but the minimal mutational distance between spatially corresponding residues is not statistically significant. The loop between the antiparallel strands in each of these domains is an important feature of the active site. In domain IV, beta-sheet topology is 2,1,3,4,5,6:[arrows:see text]. Noncovalent domain/domain interactions within the monomer are greatest between adjacent domains along the polypeptide chain, which are not substantially interdigitated and can be cleanly disengaged by altering the phi/psi torsional angles of three uniquely positioned residues in the model. The observed hierarchy of noncovalent interactions between structural units within the crystal, based on a semi-empirical paradigm, suggests that monomer-monomer contacts within the asymmetric unit are formed during growth of the lattice and provides a rationale for some of the diffraction characteristics of phosphoglucomutase crystals. An unusually deep crevice involving 58 residues is formed by the head-to-tail, twisted semicircular arrangement of the four domains of the monomer that places no atom more than 12 A from the water-accessible surface. The active site of the enzyme is extensively buried at the bottom of this crevice, at the approximate confluence of the four domains. Other features of the active site, including the surrounding helical dipoles, and the metal-ion binding pocket are described, together with structure/function comparisons with a number of other enzymes.  相似文献   

9.
High-resolution phase-sensitive two-dimensional proton nuclear magnetic resonance was used to monitor the preparation by high-performance liquid chromatography of homogeneous proteins from the venom of Naja mossambica mossambica. This resulted in the characterization of a heterogeneous protein preparation VII2, which had been used in earlier structural studies by NMR, as well as a homogeneous protein CTXIIb and a nearly homogeneous protein fraction CTXIIa, which are now both subject to further investigations of their solution conformations.  相似文献   

10.
11.
The crystal structure of staphylococcal nuclease refined at 1.7 A resolution   总被引:16,自引:0,他引:16  
T R Hynes  R O Fox 《Proteins》1991,10(2):92-105
The crystal structure of staphylococcal nuclease has been determined to 1.7 A resolution with a final R-factor of 16.2% using stereochemically restrained Hendrickson-Konnert least-squares refinement. The structure reveals a number of conformational changes relative to the structure of the ternary complex of staphylococcal nuclease 1,2 bound with deoxythymidine-3',5'-diphosphate and Ca2+. Tyr-113 and Tyr-115, which pack against the nucleotide base in the nuclease complex, are rotated outward creating a more open binding pocket in the absence of nucleotide. The side chains of Ca2+ ligands Asp-21 and Asp-40 shift as does Glu-43, the proposed general base in the hydrolysis of the 5'-phosphodiester bond. The significance of some changes in the catalytic site is uncertain due to the intrusion of a symmetry related Lys-70 side chain which hydrogen bonds to both Asp-21 and Glu-43. The position of a flexible loop centered around residue 50 is altered, most likely due to conformational changes propagated from the Ca2+ site. The side chains of Arg-35, Lys-84, Tyr-85, and Arg-87, which hydrogen bond to the 3'- and 5'-phosphates of the nucleotide in the nuclease complex, are unchanged in conformation, with packing interactions with adjacent protein side chains sufficient to fix the geometry in the absence of ligand. The nuclease structure presented here, in combination with the stereochemically restrained refinement of the nuclease complex structure at 1.65 A, provides a wealth of structural information for the increasing number of studies using staphylococcal nuclease as a model system of protein structure and function.  相似文献   

12.
The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution   总被引:4,自引:0,他引:4  
We report here the X-ray crystal structure of native subtilisin Carlsberg, solved at 2.5 A resolution by molecular replacement and refined by restrained least squares to a crystallographic residual (Formula see text): of 0.206. we compare this structure to the crystal structure of subtilisin BPN'. We find that, despite 82 amino acid substitutions and one deletion in subtilisin Carlsberg relative to subtilisin BPN', the structures of these enzymes are remarkably similar. We calculate an r.m.s. difference between equivalent alpha-carbon positions in subtilisin Carlsberg and subtilisin BPN' of only 0.55 A. This confirms previous reports of extensive structural homology between these two subtilisins based on X-ray crystal structures of the complex of eglin-c with subtilisin Carlsberg [McPhalen, C.A., Schnebli, H.P. and James, M.N.G. (1985) FEBS Lett., 188, 55; Bode, W., Papamokos, E. and Musil, D. (1987) Eur. J. Biochem., 166, 673-692]. In addition, we find that the native active sites of subtilisins Carlsberg and BPN' are virtually identical. While conservative substitutions at residues 217 and 156 may have subtle effects on the environments of substrate-binding sites S1' and S1 respectively, we find no obvious structural correlate for reports that subtilisins Carlsberg and BPN' differ in their recognition of model substrates. In particular, we find no evidence that the hydrophobic binding pocket S1 in subtilisin Carlsberg is 'deeper', 'narrower' or 'less polar' than the corresponding binding site in subtilisin BPN'.  相似文献   

13.
The refined crystal structure of ribonuclease A at 2.0 A resolution   总被引:13,自引:0,他引:13  
This paper describes the structure of bovine pancreatic ribonuclease A, refined by a restrained parameter least squares procedure at 2.0 A resolution, and rebuilt using computer graphics. The final agreement factor (formula see text) is 0.159. The positions of the 951 main chain atoms have been determined with an estimated accuracy of 0.17 A. In addition, the model includes a phosphate group in the active site and 176 waters, many of them with partial occupancy. The bond lengths in the refined structure of RNase A differ from the ideal values by an overall root mean square deviation of 0.022 A; the corresponding value for angle distances is 0.06 A. The root mean square deviation of planar atoms from ideality is 0.017 A, and root mean square deviation of the peptide torsion angles from 180 degrees is 3.4 degrees. The model is in good agreement with the final difference Fourier maps. Two active site histidines, His 12 and His 119, form hydrogen bonds to the phosphate ion. His 119 is also hydrogen bonded to the carboxyl of ASp 121 and His 12 to the carbonyl of Thr 45. The structure of the RNase A is very similar to that of RNase S, particularly in the active site region. The root mean square discrepancy of all atoms from residues 1 to 16 and 24 to 123 is 1.06 A and the root mean square discrepancy for the active site region is 0.6 A.  相似文献   

14.
Removal of asparagine-linked carbohydrate chains from Torpedo marmorata electric organ membranes was found to inhibit the binding of the iodinated alpha-neurotoxin I from Naja mossambica mossambica snake venom to its receptor. Optimal deglycosylation of membranes by endoglycosidase F resulted in a 55% inhibition of alpha-neurotoxin-I-saturable binding. Under these conditions, up to 70% of concanavalin A binding was also lost, indicating an efficient removal of mannose-rich carbohydrate chains. Saturation binding experiments at equilibrium on membranes incubated in the absence of endoglycosidase F indicated, when analyzed by Scatchard plots, the presence of two classes of high-affinity binding sites for alpha-neurotoxin I (kd = 9 pM and 68 pM respectively) with capacities of 24 and 14 pmol/mg membrane proteins, respectively. After endoglycosidase F treatment, only the former class of binding sites (Kd = 11 pM) was recovered together with a 45% reduction in the number of total binding sites. Dissociation experiments further confirmed the presence of two types of toxin-receptor complexes in control membranes and the selective loss of the rapidly dissociating component upon deglycosylation. The binding of alpha-neurotoxin I to its receptor, deglycosylated or not, was totally inhibited by carbamoylcholine, d-tubocurarine or alpha-bungarotoxin. These findings show that the neurotoxin binding sites present on the acetylcholine receptor can be discriminated on the basis of their differential susceptibility to the removal of asparagine-linked carbohydrate chains.  相似文献   

15.
The acidic phospholipase A2 isoform from the spitting cobra Naja mossambica mossambica is activated irreversibly by treatment with a molar equivalent of oleoyl imidazolide. The kinetics of the chemical modification of the enzyme can also be monitored by measuring the large reduction of tryptophan fluorescence, which is accompanied by a distinct red shift. The addition of a single molar equivalent of oleic acid to the enzyme produces an instantaneous reduction in fluorescence but with a barely detectable red shift, confirming that the response to oleoyl imidazolide results from covalent modification of the protein rather than hydrolysis of the reagent. The pH dependence of both activation and fluorescence reduction by oleoyl imidazolide has an optimum rate near pH 8.0. We propose that long-chain fatty acids and long-chain acyl imidazolides bind at a single activation site and that the reaction of the imidazolides involves two protein residues, one of which is a nonessential histidine residue and the other a primary amino group.  相似文献   

16.
The crystallographic structure of the plasminogen kringle 4-epsilon-aminocaproic acid (ACA) complex (K4-ACA) has been solved by molecular replacement rotation-translation methods utilizing the refined apo-K4 structure as a search model (Mulichak et al., 1991), and it has been refined to an R value of 0.148 at 2.25-A resolution. The K4-ACA structure consists of two interkringle residues, the kringle along with the ACA ligand, and 106 water molecules. The lysine-binding site has been confirmed to be a relatively open and shallow depression, lined by aromatic rings of Trp62, Phe64, and Trp72, which provide a highly nonpolar environment between doubly charged anionic and cationic centers formed by Asp55/Asp57 and Lys35/Arg71. A zwitterionic ACA ligand molecule is held by hydrogen-bonded ion pair interactions and van der Waals contacts between the charged centers. The lysine-binding site of apo-K4 and K4-ACA have been compared: the rms differences in main-chain and side-chain positions are 0.25 and 0.69 A, respectively, both practically within error of the determinations. The largest deviations in the binding site are due to different crystal packing interactions. Thus, the lysine-binding site appears to be preformed, and lysine binding does not require conformational changes of the host. The results of NMR studies of lysine binding with K4 are correlated with the structure of K4-ACA and agree well.  相似文献   

17.
18.
Methionine residues 24 and 26 of cardiotoxin VII1 from Naja melanoleuca were oxidised to sulphoxides using N-chlorosuccinimide at pH 8.5. The number of equivalents of oxidant required for complete oxidation suggested that the methionine side-chains existed in a relatively "exposed" conformational state in cardiotoxin. The oxidised cardiotoxin was devoid of lethality. It was also non-haemolytic, both on its own and in the presence of phospholipase A2. However, it was still able to precipitate with anti-cardiotoxin antibody. CD studies indicated that the polypeptide backbone conformation was intact in the oxidised cardiotoxin but some perturbation of tyrosine residues was evident. The possibility of a direct or indirect involvement of the methionine residues in the biological activity of the cardiotoxin is discussed.  相似文献   

19.
A fully active, semisynthetic analog of bovine ribonuclease A, comprised of residues 1-118 of the molecule in a noncovalent complex with the synthetic peptide analog of residues 111-124, has been crystallized in space group P3(2)21 from a solution of 1.3 M ammonium sulfate and 3.0 M cesium chloride at pH 5.2. The crystallographic structure was determined by rotation and translation searches utilizing the coordinates for ribonuclease A reported by Wlodawer and Sjolin (Wlodawer, A., and Sjolin, L. (1983) Biochemistry 22, 2720-2728) and has been refined at 1.8-A resolution to an agreement factor of 0.204. Most of the structure of the semisynthetic enzyme closely resembles that found in ribonuclease A with the synthetic peptide replacing the C-terminal elements of the naturally occurring enzyme. No redundant structure is seen; residues 114-118 of the larger chain and residues 111-113 of the peptide do not appear in our map. The positions of those residues at or near the active site are very similar to, if not identical with, those previously reported by others, except for histidine 119, which occupies predominantly the B position seen as a minor site by Borkakoti et al. (Borkakoti, N., Moss, D. S., and Palmer, R. A. (1982) Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 38,2210-2217) and not at all by Wlodawer and Sjolin (1983).  相似文献   

20.
The virally encoded 3C proteinases of picornaviruses process the polyprotein produced by the translation of polycistronic viral mRNA. The X-ray crystallographic structure of a catalytically active mutant of the hepatitis A virus (HAV) 3C proteinase (C24S) has been determined. Crystals of this mutant of HAV 3C are triclinic with unit cell dimensions a = 53.6 A, b = 53.5 A, c = 53.2 A, alpha = 99.1 degrees, beta = 129.0 degrees, and gamma = 103.3 degrees. There are two molecules of HAV 3C in the unit cell of this crystal form. The structure has been refined to an R factor of 0.211 (Rfree = 0.265) at 2.0-A resolution. Both molecules fold into the characteristic two-domain structure of the chymotrypsin-like serine proteinases. The active-site and substrate-binding regions are located in a surface groove between the two beta-barrel domains. The catalytic Cys 172 S(gamma) and His 44 N(epsilon2) are separated by 3.9 A; the oxyanion hole adopts the same conformation as that seen in the serine proteinases. The side chain of Asp 84, the residue expected to form the third member of the catalytic triad, is pointed away from the side chain of His 44 and is locked in an ion pair interaction with the epsilon-amino group of Lys 202. A water molecule is hydrogen bonded to His 44 N(delta1). The side-chain phenolic hydroxyl group of Tyr 143 is close to this water and to His 44 N(delta1) and may be negatively charged. The glutamine specificity for P1 residues of substrate cleavage sites is attributed to the presence of a highly conserved His 191 in the S1 pocket. A very unusual environment of two water molecules and a buried glutamate contribute to the imidazole tautomer believed to be important in the P1 specificity. HAV 3C proteinase has the conserved RNA recognition sequence KFRDI located in the interdomain connection loop on the side of the molecule diametrically opposite the proteolytic site. This segment of polypeptide is located between the N- and C-terminal helices, and its conformation results in the formation of a well-defined surface with a strongly charged electrostatic potential. Presumably, this surface of HAV 3C participates in the recognition of the 5' and 3' nontranslated regions of the RNA genome during viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号