首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND: Many enzymes that digest polysaccharides contain separate polysaccharide-binding domains. Structures have been previously determined for a number of cellulose-binding domains (CBDs) from cellulases. RESULTS: The family IIb xylan-binding domain 1 (XBD1) from Cellulomonas fimi xylanase D is shown to bind xylan but not cellulose. Its structure is similar to that of the homologous family IIa CBD from C. fimi Cex, consisting of two four-stranded beta sheets that form a twisted 'beta sandwich'. The xylan-binding site is a groove made from two tryptophan residues that stack against the faces of the sugar rings, plus several hydrogen-bonding polar residues. CONCLUSIONS: The biggest difference between the family IIa and IIb domains is that in the former the solvent-exposed tryptophan sidechains are coplanar, whereas in the latter they are perpendicular, forming a twisted binding site. The binding sites are therefore complementary to the secondary structures of the ligands cellulose and xylan. XBD1 and CexCBD represent a striking example of two proteins that have high sequence similarity but a different function.  相似文献   

3.
Endoglucanase C (CenC) from Cellulomonas fimi binds to cellulose and to Sephadex. The enzyme has two contiguous 150-amino-acid repeats (N1 and N2) at its N-terminus and two unrelated contiguous 100-amino-acid repeats (C1 and C2) at its C-terminus. Polypeptides corresponding to N1, N1N2, C1, and C1C2 were produced by expression of appropriate cenC gene fragments in Escherichia coli. N1N2, but not N1 alone, binds to Sephadex; both polypeptides bind to Avicel, (a heterogeneous cellulose preparation containing both crystalline and non-crystalline components). Neither C1 nor C1C2 binds to Avicel or Sephadex. N1N2 and N1 bind to regenerated ('amorphous') cellulose but not to bacterial crystalline cellulose; the cellulose-binding domain of C. fimi exoglucanase Cex binds to both of these forms of cellulose. Amino acid sequence comparison reveals that N1 and N2 are distantly related to the cellulose-binding domains of Cex and C. fimi endoglucanases A and B.  相似文献   

4.
Abstract Endoglucanases CenA, CenB and CenD, cellobiohydrolases CbhA and CbhB, and the mixed function xylanase-exoglucanase Cex are degraded proteolytically in the supernatants of cultures of Cellulomonas fimi growing with cellulose. All of these polypeptides are modular. The initial sites of proteolysis are within or adjacent to the linkers connecting the modules, leading to the appearance of discrete fragments of the enzymes which retain the functions of the component modules.  相似文献   

5.
Exoglucanase Cex from Cellulomonas fimi is a glycoprotein [Langsford et al., J. Gen. Microbiol. 130 (1984) 1367-1376]. Cex produced by Streptomyces lividans from the cloned cex gene is also glycosylated. The extent and nature of glycosylation are similar for Cex from both organisms. The glycosylation affords protection against proteolysis for the enzymes from both organisms when they are bound to cellulose, but not in solution. The ability to glycosylate cloned gene products enhances the utility of Streptomyces as a host for the production of heterologous polypeptides.  相似文献   

6.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

7.
The cenC gene of Cellulomonas fimi, encoding endoglucanase CenC, has an open reading frame of 1101 codons closely followed by a 9 bp inverted repeat. The predicted amino acid sequence of mature CenC, which is 1069 amino acids long, is very unusual in that it has a 150-amino-acid tandem repeat at the N-terminus and an unrelated 100-amino-acid tandem repeat at the C-terminus. CenC belongs to subfamily E1 of the beta-1,4-glycanases. High-level expression in Escherichia coli of cenC from a 3.6 kbp fragment of C. fimi DNA leads to levels of CenC which exceed 10% of total cell protein. Most of the CenC is in the cytoplasm in an inactive form. About 60% of the active fraction of CenC is in the periplasm. The catalytic properties of the active CenC are indistinguishable from those of native CenC from C. fimi. The Mr of CenC from E. coli and C. fimi is approximately 130 kDa. E. coli and C. fimi also produce an endoglucanase, CenC', of approximate Mr 120kDa and with the same N-terminal amino acid sequence and catalytic properties as CenC. CenC' appears to be a proteolytic product of CenC. CenC and CenC' can bind to cellulose and to Sephadex. CenC is the most active component of the C. fimi cellulase system isolated to date.  相似文献   

8.
Fusion of the leader peptide and the cellulose-binding domain (CBD) of endoglucanase A (CenA) from Cellulomonas fimi, with of without linker sequences, to the N-terminus of alkaline phosphatase (PhoA) from Escherichia coli leads to the accumulation of significant amounts of the CBD-PhoA fusion proteins in the supernatants of E. coli cultures. The fusion proteins can be purified from the supernatants by affinity chromatography on cellulose. The fusion protein can be desorbed from the cellulose with water or guanidine-HCl. If the sequence IEGR in present between the CBD and PhoA, the CBD can be cleaved from the PhoA with factor Xa. The efficiency of hydrolysis by factor Xa is strongly in fluenced by the amino acids on either side of the IEGR sequence. The CBD released by factor Xa is removed by adsorption to cellulose. A nonspecific proteases from C. fimi, which hydrolyzes native CenA between the CBD and the catalytic domain, may be useful for removing the CBD from some fusion proteins. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
The DNA sequences of the Thermomonospora fusca genes encoding cellulases E2 and E5 and the N-terminal end of E4 were determined. Each sequence contains an identical 14-bp inverted repeat upstream of the initiation codon. There were no significant homologies between the coding regions of the three genes. The E2 gene is 73% identical to the celA gene from Microbispora bispora, but this was the only homology found with other cellulase genes. E2 belongs to a family of cellulases that includes celA from M. bispora, cenA from Cellulomonas fimi, casA from an alkalophilic Streptomyces strain, and cellobiohydrolase II from Trichoderma reesei. E4 shows 44% identity to an avocado cellulase, while E5 belongs to the Bacillus cellulase family. There were strong similarities between the amino acid sequences of the E2 and E5 cellulose binding domains, and these regions also showed homology with C. fimi and Pseudomonas fluorescens cellulose binding domains.  相似文献   

10.
11.
Structure of the gene encoding the exoglucanase of Cellulomonas fimi   总被引:29,自引:0,他引:29  
G O'Neill  S H Goh  R A Warren  D G Kilburn  R C Miller 《Gene》1986,44(2-3):325-330
In Cellulomonas fimi the cex gene encodes an exoglucanase (Exg) involved in the degradation of cellulose. The gene now has been sequenced as part of a 2.58-kb fragment of C. fimi DNA. The cex coding region of 1452 bp (484 codons) was identified by comparison of the DNA sequence to the N-terminal amino acid (aa) sequence of the Exg purified from C. fimi. The Exg sequence is preceded by a putative signal peptide of 41 aa, a translational initiation codon, and a sequence resembling a ribosome-binding site five nucleotides (nt) before the initiation codon. The nt sequence immediately following the translational stop codon contains four inverted repeats, two of which overlap, and which can be arranged in stable secondary structures. The codon usage in C. fimi appears to be quite different from that of Escherichia coli. A dramatic (98.5%) bias occurs for G or C in the third position for the 35 codons utilized in the cex gene.  相似文献   

12.
The family 2a carbohydrate-binding module (CBM2a) of xylanase 10A from Cellulomonas fimi binds to the crystalline regions of cellulose. It does not share binding sites with the N-terminal family 4 binding module (CBM4-1) from the cellulase 9B from C.fimi, a module that binds strictly to soluble sugars and amorphous cellulose. The binding of CBM2a to crystalline matrices is mediated by several residues on the binding face, including three prominent, solvent-exposed tryptophan residues. Binding to crystalline cellulose was analyzed by making a series of conservative (phenylalanine and tyrosine) and non-conservative substitutions (alanine) of each solvent-exposed tryptophan (W17, W54 and W72). Other residues on the binding face with hydrogen bonding potential were substituted with alanine. Each tryptophan plays a different role in binding; a tryptophan is essential at position 54, a tyrosine or tryptophan at position 17 and any aromatic residue at position 72. Other residues on the binding face, with the exception of N15, are not essential determinants of binding affinity. Given the specificity of CBM2a, the structure of crystalline cellulose and the dynamic nature of the binding of CBM2a, we propose a model for the interaction between the polypeptide and the crystalline surface.  相似文献   

13.
We demonstrate homology between the catalytic domains of exoglucanase (1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.91) from Cellulomonas fimi and those of endoxylanases (1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8) from Bacillus sp. strain C-125 and the fungus Cryptococcus albidus; and between the catalytic domains of endoglucanase (1,4-(1,3:1,4)-beta-D-glucan 4-glucanohydrolase, EC 3.2.1.4) from Cellulomonas fimi and exoglucanase II from Trichoderma reesei. These five enzymes apparently evolved by reshuffling of two catalytic domains and several substrate-binding domains.  相似文献   

14.
By the use of a T7 expression system, endoglucanases-xylanases EngB and EngD from Clostridium cellulovorans were hyperexpressed and purified from Escherichia coli. The two enzymes demonstrated both endoglucanase and xylanase activities. The substrate specificities of both endoglucanases were similar except that EngD had four-times-greater p-nitrophenyl beta-1,4-cellobiosidase activity. The two proteins were very homologous (80%) up to the Pro-Thr-Thr region which divided the protein into -NH2- and -COOH-terminals. The -COOH- region of EngB has high homology to the endoglucanases and a xylanase from Clostridium thermocellum and to an endoglucanase from Clostridium cellulolyticum and did not show strong binding to cellulose (Avicel). However, the -COOH- region of EngD, which had homology to the cellulose-binding domains of Cellulomonas fimi exo- and endoglucanases and to Pseudomonas fluorescens endoglucanase, demonstrated binding ability to cellulose even when the domain was fused to the N-terminal domain of EngB. By probing the Avicel-purified cellulase complex (F8) with anti-EngB and anti-EngD antibodies, both EngB and EngD were shown to be present on the cellulase complex of C. cellulovorans. Many proteins homologous to EngB and EngD were also present on the complex.  相似文献   

15.
More than 10 protein molecules with endo-1,4-beta-glucanase activity were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram in Cellulomonas fimi culture supernatants, grown in CMC as carbon source. These molecules are shown to belong to at least four immunologically different groups, against three of which polyclonal antibodies were raised. The protein species used as antigens showed significant differences in cross reactivity, carbon regulation, and affinity to crystalline cellulose. Three intracellular precursors of the first group were detected, two of which were under carbon catabolite control with the third apparently being synthesized constitutively. In the extracellular environment this group showed the largest versatility in protein molecules. The second group appeared to originate from two intracellular precursors both synthesized constitutively and subject to minor extracellular modifications as compared to the first group. The main extracellular protein of this group showed high affinity toward crystalline cellulose. One intracellular precursor was identified for the third group, which was subject to carbon catabolite control. Only one extracellular molecule without binding ability to crystalline cellulose corresponded to this precursor, indicating that the latter was resistant to proteolytic modifications after excretion. It appears that the C. fimi cellulases are more complex than expected and reconstitution of the whole system will be difficult.  相似文献   

16.
New proteomics methods are required for targeting and identification of subsets of a proteome in an activity-based fashion. Here, we report the first gel-free, mass spectrometry-based strategy for mechanism-based profiling of retaining beta-endoglycosidases in complex proteomes. Using a biotinylated, cleavable 2-deoxy-2-fluoroxylobioside inactivator, we have isolated and identified the active-site peptides of target retaining beta-1,4-glycanases in systems of increasing complexity: pure enzymes, artificial proteomes, and the secreted proteome of the aerobic mesophilic soil bacterium Cellulomonas fimi. The active-site peptide of a new C. fimi beta-1,4-glycanase was identified in this manner, and the peptide sequence, which includes the catalytic nucleophile, is highly conserved among glycosidase family 10 members. The glycanase gene (GenBank accession number DQ146941) was cloned using inverse PCR techniques, and the protein was found to comprise a catalytic domain that shares approximately 70% sequence identity with those of xylanases from Streptomyces sp. and a family 2b carbohydrate-binding module. The new glycanase hydrolyzes natural and artificial xylo-configured substrates more efficiently than their cello-configured counterparts. It has a pH dependence very similar to that of known C. fimi retaining glycanases.  相似文献   

17.
We used the yeast MEL1 gene for secreted alpha-galactosidase to construct cartridges for the regulated expression of foreign proteins from Saccharomyces cerevisiae. The gene for a Cellulomonas fimi beta-1,4-exoglucanase was inserted into one cartridge to create a fusion of the alpha-galactosidase signal peptide to the exoglucanase. Yeast transformed with plasmids containing this construction produced active extracellular exoglucanase when grown under conditions appropriate to MEL1 promoter function. The cells also produced active intracellular enzyme. The secreted exoglucanase was N-glycosylated and was produced continuously during culture growth. It hydrolyzed xylan, carboxymethyl cellulose, 4-methylumbelliferyl-beta-d-cellobiose, and p-nitrophenyl-beta-d-cellobiose. A comparison of the recombinant S. cerevisiae enzyme with the native C. fimi enzyme showed the yeast version to have an identical K(m) and pH optimum but to be more thermostable.  相似文献   

18.
Three recombinant plasmids, pEC1, pEC2, and pEC3, each containing a unique Cellulomonas fimi chromosomal DNA insert, expressed Cm-cellulase activities in Escherichia coli C600 (Whittle, D. J., Kilburn, D. H., Warren, R. A. J., and Miller, R. C., Jr. (1982) Gene (Amst.) 17, 139-145; Gilkes, N. R., Kilburn, D. G., Langsford, M. L., Miller, R. C., Jr., Wakarchuk, W. W., Warren, R. A. J., Whittle, D. J., and Wong, W. K. R. (1984) J. Gen. Microbiol. 130, 1377-1384). Viscometric and chemical analyses showed that the enzymes encoded by pEC2 and pEC3 behaved as endoglucanases, whereas that encoded by pEC1 behaved as an exoglucanase. The activities of the exoglucanase and the pEC2-encoded endodglucanase were additive on Cm-cellulose as substrate. The pEC1-encoded enzyme also hydrolyzed xylan and p-nitrophenyl cellobioside. Two substrate-bound Cm-cellulases were isolated from the residual cellulose in a C. fimi culture by guanidine hydrochloride elution, affinity chromatography, and polyacrylamide gel electrophoresis. Both were glycoproteins of apparent Mr = 58,000 and 56,000, respectively. The 56-kDa enzyme appeared to be identical with the pEC1-encoded product, suggesting that they arise from the same gene.  相似文献   

19.
Qi M  O'Brien JP  Yang J 《Biopolymers》2008,90(1):28-36
A structured triblock protein was designed to explore the potential of engineered peptides to function as high-performance ink dispersants and binders. The protein consists of three functional elements, including a pigment binding domain, a hydrophilic linker, and a printing surface binding domain. To construct such a chimeric protein, a carbon black binding peptide, FHENWPS, and a cellulose binding peptide, THKTSTQRLLAA, were identified from phage display libraries through biopanning, based on their strong and specific binding affinities to carbon black and cellulose. They were used as carbon black and cellulose binding domains, respectively, in a recombinant triblock protein. A linker sequence, PTPTPTPTPTPTPTPTPTPTPTP, was adapted from endoglucanase A of the bacterium Cellulomonas fimi, as a small, rigid, and hydrophilic interdomain linker. When incorporated into the triblock structure between the carbon black and cellulose binding sequences, the linker sufficiently isolates these two elements and allows dual binding activity. The structured triblock protein was shown to disperse carbon black particles and attach it to paper surfaces. Thus, the utility of structured proteins having useful dispersant and binding properties for digital printing inks was demonstrated.  相似文献   

20.
A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex, CexCBDCbhI, the catalytic domain of Cex (p33), and CbhI to bacterial microcrystalline cellulose (BMCC) were 14.9, 7.8, 0.8, and 10.6 liters g-1, respectively. Cex and CexCBDCbhI had similar substrate specificities and similar activities on crystalline and amorphous cellulose. Both released predominantly cellobiose and cellotriose from amorphous cellulose. CexCBDCbhI was two to three times less active than Cex on BMCC, but significantly more active than Cex on soluble cellulose and on xylan. Unlike Cex, the hybrid protein neither bound to alpha-chitin nor released small particles from dewaxed cotton fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号