首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some regions of high LD interspersed with regions of low LD. Such LD patterns make it possible to select a set of single nucleotide polymorphism (SNPs; tag SNPs) for genome-wide association studies. We have developed a suite of computer programs to analyze the block-like LD patterns and to select the corresponding tag SNPs. Compared to other programs for haplotype block partitioning and tag SNP selection, our program has several notable features. First, the dynamic programming algorithms implemented are guaranteed to find the block partition with minimum number of tag SNPs for the given criteria of blocks and tag SNPs. Second, both haplotype data and genotype data from unrelated individuals and/or from general pedigrees can be analyzed. Third, several existing measures/criteria for haplotype block partitioning and tag SNP selection have been implemented in the program. Finally, the programs provide flexibility to include specific SNPs (e.g. non-synonymous SNPs) as tag SNPs. AVAILABILITY: The HapBlock program and its supplemental documents can be downloaded from the website http://www.cmb.usc.edu/~msms/HapBlock.  相似文献   

2.
Single nucleotide polymorphisms (SNPs) have been proposed to be grouped into haplotype blocks harboring a limited number of haplotypes. Within each block, the portion of haplotypes is expected to be tagged by a selected subset of SNPs; however, none of the proposed selection algorithms have been definitive. To address this issue, we developed a tag SNP selection algorithm based on grouping of SNPs by the linkage disequilibrium (LD) coefficient r(2) and examined five genes in three ethnic populations--the Japanese, African Americans, and Caucasians. Additionally, we investigated ethnic diversity by characterizing 979 SNPs distributed throughout the genome. Our algorithm could spare 60% of SNPs required for genotyping and limit the imprecision in allele-frequency estimation of nontag SNPs to 2% on average. We discovered the presence of a mosaic pattern of LD plots within a conventionally inferred haplotype block. This emerged because multiple groups of SNPs with strong intragroup LD were mingled in their physical positions. The pattern of LD plots showed some similarity, but the details of tag SNPs were not entirely concordant among three populations. Consequently, our algorithm utilizing LD grouping allows selection of a more faithful set of tag SNPs than do previous algorithms utilizing haplotype blocks.  相似文献   

3.
Single-nucleotide polymorphisms (SNPs) play a major role in the understanding of the genetic basis of many complex human diseases. It is still a major challenge to identify the functional SNPs in disease-related genes. In this review, the genetic variation that can alter the expression and the function of the genes, namely KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2, with the potential role for the development of congenital long QT syndrome (LQTS) was analyzed. Of the total of 3,309 SNPs in all five genes, 27 non-synonymous SNPs (nsSNPs) in the coding region and 44 SNPs in the 5′ and 3′ un-translated regions (UTR) were identified as functionally significant. SIFT and PolyPhen programs were used to analyze the nsSNPs and FastSNP; UTR scan programs were used to compute SNPs in the 5′ and 3′ untranslated regions. Of the five selected genes, KCNQ1 has the highest number of 26 haplotype blocks and 6 tag SNPs with a complete linkage disequilibrium value. The gene SCN5A has ten haplotype blocks and four tag SNPs. Both KCNE1 and KCNE2 genes have only one haplotype block and four tag SNPs. Four haplotype blocks and two tag SNPs were obtained for KCNH2 gene. Also, this review reports the copy number variations (CNVs), expressed sequence tags (ESTs) and genome survey sequences (GSS) of the selected genes. These computational methods are in good agreement with experimental works reported earlier concerning LQTS.  相似文献   

4.
One approach to identify potentially important segments of the human genome is to search for DNA regions with nonrandom patterns of human sequence variation. Previous studies have investigated these patterns primarily in and around candidate gene regions. Here, we determined patterns of DNA sequence variation in 2.5 Mb of finished sequence from five regions on human chromosome 21. By sequencing 13 individual chromosomes, we identified 1460 single-nucleotide polymorphisms (SNPs) and obtained unambiguous haplotypes for all chromosomes. For all five chromosomal regions, we observed segments with high linkage disequilibrium (LD), extending from 1.7 to>81 kb (average 21.7 kb), disrupted by segments of similar or larger size with no significant LD between SNPs. At least 25% of the contig sequences consisted of segments with high LD between SNPs. Each of these segments was characterized by a restricted number of observed haplotypes,with the major haplotype found in over 60% of all chromosomes. In contrast, the interspersed segments with low LD showed significantly more haplotype patterns. The position and extent of the segments of high LD with restricted haplotype variability did not coincide with the location of coding sequences. Our results indicate that LD and haplotype patterns need to be investigated with closely spaced SNPs throughout the human genome, independent of the location of coding sequences, to reliably identify regions with significant LD useful for disease association studies.  相似文献   

5.
Recent studies have shown that the human genome has a haplotype block structure, such that it can be divided into discrete blocks of limited haplotype diversity. In each block, a small fraction of single-nucleotide polymorphisms (SNPs), referred to as "tag SNPs," can be used to distinguish a large fraction of the haplotypes. These tag SNPs can potentially be extremely useful for association studies, in that it may not be necessary to genotype all SNPs; however, this depends on how much power is lost. Here we develop a simulation study to quantitatively assess the power loss for a variety of study designs, including case-control designs and case-parental control designs. First, a number of data sets containing case-parental or case-control samples are generated on the basis of a disease model. Second, a small fraction of case and control individuals in each data set are genotyped at all the loci, and a dynamic programming algorithm is used to determine the haplotype blocks and the tag SNPs based on the genotypes of the sampled individuals. Third, the statistical power of tests was evaluated on the basis of three kinds of data: (1) all of the SNPs and the corresponding haplotypes, (2) the tag SNPs and the corresponding haplotypes, and (3) the same number of randomly chosen SNPs as the number of tag SNPs and the corresponding haplotypes. We study the power of different association tests with a variety of disease models and block-partitioning criteria. Our study indicates that the genotyping efforts can be significantly reduced by the tag SNPs, without much loss of power. Depending on the specific haplotype block-partitioning algorithm and the disease model, when the identified tag SNPs are only 25% of all the SNPs, the power is reduced by only 4%, on average, compared with a power loss of approximately 12% when the same number of randomly chosen SNPs is used in a two-locus haplotype analysis. When the identified tag SNPs are approximately 14% of all the SNPs, the power is reduced by approximately 9%, compared with a power loss of approximately 21% when the same number of randomly chosen SNPs is used in a two-locus haplotype analysis. Our study also indicates that haplotype-based analysis can be much more powerful than marker-by-marker analysis.  相似文献   

6.
Patterns of linkage disequilibrium in the MHC region on human chromosome 6p   总被引:5,自引:0,他引:5  
Single nucleotide polymorphisms (SNPs) in the human genome are thought to be organised into blocks of high internal linkage disequilibrium (LD), separated by intermittent recombination hotspots. Since understanding haplotype structure is critical for an accurate assessment of inter-individual genetic differences, we investigated up to 968 SNPs from a 10-Mb region on chromosome 6p21, including the human major histocompatibility complex (MHC), in five different population samples (45–550 individuals). Regions of well-defined block structure were found to coexist alongside large areas lacking any clear structure; occasional long-range LD was observed in all five samples. The four white populations analysed were remarkably similar in terms of the extend and spatial distribution of local LD. In US African Americans, the distribution of LD was similar to that in the white populations but the observed haplotype diversity was higher. The existence of large regions without any clear block structure renders the systematic and thorough construction of SNP haplotype maps a crucial prerequisite for disease-association studies.Electronic Supplementary Material Supplementary material is available in the online version of this article at Electronic database information: URLs for the data in this article are as follows:  相似文献   

7.
Linkage disequilibrium (LD) is an essential metric for selecting single-nucleotide polymorphisms (SNPs) to use in genetic studies and identifying causal variants from significant tag SNPs. The explosion in the number of polymorphisms that can now be genotyped by commercial arrays makes the interpretation of triangular correlation plots, commonly used for visualizing LD, extremely difficult in particular when large genomics regions need to be considered or when SNPs in perfect LD are not adjacent but scattered across a genomic region. We developed ArchiLD, a user-friendly graphical application for the hierarchical visualization of LD in human populations. The software provides a powerful framework for analyzing LD patterns with a particular focus on blocks of SNPs in perfect linkage as defined by r2. Thanks to its integration with the UCSC Genome Browser, LD plots can be easily overlapped with additional data on regulation, conservation and expression. ArchiLD is an intuitive solution for the visualization of LD across large or highly polymorphic genomic regions. Its ease of use and its integration with the UCSC Genome Browser annotation potential facilitates the interpretation of association results and enables a more informed selection of tag SNPs for genetic studies.  相似文献   

8.
Lee HJ  Kim KJ  Park MH  Kimm K  Park C  Oh B  Lee JY 《Human heredity》2005,60(2):73-80
OBJECTIVE: We investigated sequence variations of the 29-kb insulin-like growth factor 2 (IGF2) region in human chromosome region 11p15.5 in the Korean population. This region consists of IGF2, insulin-like growth factor 2 antisense (IGF2AS), and the insulin gene, all important candidate genes for various diseases, including cancer, obesity, diabetes, and coronary disease. While single nucleotide polymorphisms (SNPs) have been identified for this region and used in association studies, ethnic differences in genetic variation at this site have not been addressed. To date, SNPs for the entire 29-kb region in the Korean population have not been reported. METHODS: We surveyed a population of 108 Koreans for SNPs in the 29-kb IGF2 region. RESULTS: We identified 62 SNPs, consisting of 6 SNPs in the promoter region, 17 in the untranslated region, 19 in introns, and 20 in the intergenic region. We also analyzed linkage disequilibrium (LD) patterns and haplotypes using 36 high-frequency (> 5%)SNPs and found a well-defined LD block spanning about 13 kb that includes 8 kb of the IGF2AS gene, with two hot-spot regions flanking the LD block. CONCLUSION: These SNPs may be useful as genetic markers in disease association studies in the Korean population.  相似文献   

9.

Background

The selection of markers in association studies can be informed through the use of haplotype blocks. Recent reports have determined the genomic architecture of chromosomal segments through different haplotype block definitions based on linkage disequilibrium (LD) measures or haplotype diversity criteria. The relative applicability of distinct block definitions to association studies, however, remains unclear. We compared different block definitions in 6.1 Mb of chromosome 17q in 189 unrelated healthy individuals. Using 137 single nucleotide polymorphisms (SNPs), at a median spacing of 15.5 kb, we constructed haplotype block maps using published methods and additional methods we have developed. Haplotype tagging SNPs (htSNPs) were identified for each map.

Results

Blocks were found to be shorter and coverage of the region limited with methods based on LD measures, compared to the method based on haplotype diversity. Although the distribution of blocks was highly variable, the number of SNPs that needed to be typed in order to capture the maximum number of haplotypes was consistent.

Conclusion

For the marker spacing used in this study, choice of block definition is not important when used as an initial screen of the region to identify htSNPs. However, choice of block definition has consequences for the downstream interpretation of association study results.  相似文献   

10.

Background  

Single Nucleotide Polymorphisms (SNPs) are the most common type of polymorphisms found in the human genome. Effective genetic association studies require the identification of sets of tag SNPs that capture as much haplotype information as possible. Tag SNP selection is analogous to the problem of data compression in information theory. According to Shannon's framework, the optimal tag set maximizes the entropy of the tag SNPs subject to constraints on the number of SNPs. This approach requires an appropriate probabilistic model. Compared to simple measures of Linkage Disequilibrium (LD), a good model of haplotype sequences can more accurately account for LD structure. It also provides a machinery for the prediction of tagged SNPs and thereby to assess the performances of tag sets through their ability to predict larger SNP sets.  相似文献   

11.
Haplotype block structure is conserved across mammals   总被引:2,自引:0,他引:2  
Genetic variation in genomes is organized in haplotype blocks, and species-specific block structure is defined by differential contribution of population history effects in combination with mutation and recombination events. Haplotype maps characterize the common patterns of linkage disequilibrium in populations and have important applications in the design and interpretation of genetic experiments. Although evolutionary processes are known to drive the selection of individual polymorphisms, their effect on haplotype block structure dynamics has not been shown. Here, we present a high-resolution haplotype map for a 5-megabase genomic region in the rat and compare it with the orthologous human and mouse segments. Although the size and fine structure of haplotype blocks are species dependent, there is a significant interspecies overlap in structure and a tendency for blocks to encompass complete genes. Extending these findings to the complete human genome using haplotype map phase I data reveals that linkage disequilibrium values are significantly higher for equally spaced positions in genic regions, including promoters, as compared to intergenic regions, indicating that a selective mechanism exists to maintain combinations of alleles within potentially interacting coding and regulatory regions. Although this characteristic may complicate the identification of causal polymorphisms underlying phenotypic traits, conservation of haplotype structure may be employed for the identification and characterization of functionally important genomic regions.  相似文献   

12.
Genome-wide association (GWA) studies are currently one of the most powerful tools in identifying disease-associated genes or variants. In typical GWA studies, single-nucleotide polymorphisms (SNPs) are often used as genetic makers. Therefore, it is critical to estimate the percentage of genetic variations which can be covered by SNPs through linkage disequilibrium (LD). In this study, we use the concept of haplotype blocks to evaluate the coverage of five SNP sets including the HapMap and four commercial arrays, for every exon in the human genome. We show that although some Chips can reach similar coverage as the HapMap, only about 50% of exons are completely covered by haplotype blocks of HapMap SNPs. We suggest further high-resolution genotyping methods are required, to provide adequate genome-wide power for identifying variants.  相似文献   

13.
Evaluating the patterns of linkage disequilibrium (LD) is important for association mapping study as well as for studying the genomic architecture of human genome (e.g., haplotype block structures). Commonly used bi-allelic pairwise measures for assessing LD between two loci, such as r 2 and D′, may not make full and efficient use of modern multilocus data. Though extended to multilocus scenarios, their performance is still questionable. Meanwhile, most existing measures for an entire multilocus region, such as normalized entropy difference, do not consider existence of LD heterogeneity across the region under investigation. Additionally, these existing multilocus measures cannot handle distant regions where long-range LD patterns may exist. In this study, we proposed a novel multilocus LD measure developed based on mutual information theory. Our proposed measure described LD pattern between two chromosome regions each of which may consist of multiple loci (including multi-allele loci). As such, the proposed measure can better characterize LD patterns between two arbitrary regions. As potential applications, we developed algorithms on the proposed measure for partitioning haplotype blocks and for selecting haplotype tagging SNPs (htSNPs), which were helpful for follow-up association tests. The results on both simulated and empirical data showed that our LD measure had distinct advantages over pairwise and other multilocus measures. First, our measure was more robust, and can capture comprehensively the LD information between neighboring as well as disjointed regions. Second, haplotype blocks were better described via our proposed measure. Furthermore, association tests with htSNPs from the proposed algorithm had improved power over tests on single markers and on haplotypes.  相似文献   

14.
Analysis of data on 1000 Holstein-Friesian bulls genotyped for 15,036 single-nucleotide polymorphisms (SNPs) has enabled genomewide identification of haplotype blocks and tag SNPs. A final subset of 9195 SNPs in Hardy-Weinberg equilibrium and mapped on autosomes on the bovine sequence assembly (release Btau 3.1) was used in this study. The average intermarker spacing was 251.8 kb. The average minor allele frequency (MAF) was 0.29 (0.05-0.5). Following recent precedents in human HapMap studies, a haplotype block was defined where 95% of combinations of SNPs within a region are in very high linkage disequilibrium. A total of 727 haplotype blocks consisting of > or =3 SNPs were identified. The average block length was 69.7 +/- 7.7 kb, which is approximately 5-10 times larger than in humans. These blocks comprised a total of 2964 SNPs and covered 50,638 kb of the sequence map, which constitutes 2.18% of the length of all autosomes. A set of tag SNPs, which will be useful for further fine-mapping studies, has been identified. Overall, the results suggest that as many as 75,000-100,000 tag SNPs would be needed to track all important haplotype blocks in the bovine genome. This would require approximately 250,000 SNPs in the discovery phase.  相似文献   

15.

Background  

Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these SNPs play an important role in understanding the association between genetic variations and human diseases. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that are sufficient to infer all the other SNPs. Algorithms based on the r 2 LD statistic have gained popularity because r 2 is directly related to statistical power to detect disease associations. Most of existing r 2 based algorithms use pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However, existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.  相似文献   

16.
17.

Background

The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.

Results

From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1–100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.

Conclusion

This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1–100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.  相似文献   

18.
HaploBlockFinder: haplotype block analyses   总被引:8,自引:0,他引:8  
Recent studies have unveiled discrete block-like structures of linkage disequilibrium (LD) in the human genome. We have developed a set of computer programs to analyze the block-like LD structures (haplotype blocks) based on haplotype data. Three definitions of haplotype block are supported, including minimal LD range, no historic recombination, and chromosome coverage. Tagged SNPs that uniquely distinguish common haplotypes are identified. A greedy algorithm was used to improve the efficiency. Two separate utilities were also provided to assist visual inspection of haplotype block structure and pattern of linkage disequilibrium. AVAILABILITY: A web interface for the HaploBlockFinder is available at http://cgi.uc.edu/cgi-bin/kzhang/haploBlockFinder.cgi the source codes are also freely available on the web site.  相似文献   

19.
Kostem E  Lozano JA  Eskin E 《Genetics》2011,188(2):449-460
Genome-wide association studies (GWASs) have been effectively identifying the genomic regions associated with a disease trait. In a typical GWAS, an informative subset of the single-nucleotide polymorphisms (SNPs), called tag SNPs, is genotyped in case/control individuals. Once the tag SNP statistics are computed, the genomic regions that are in linkage disequilibrium (LD) with the most significantly associated tag SNPs are believed to contain the causal polymorphisms. However, such LD regions are often large and contain many additional polymorphisms. Following up all the SNPs included in these regions is costly and infeasible for biological validation. In this article we address how to characterize these regions cost effectively with the goal of providing investigators a clear direction for biological validation. We introduce a follow-up study approach for identifying all untyped associated SNPs by selecting additional SNPs, called follow-up SNPs, from the associated regions and genotyping them in the original case/control individuals. We introduce a novel SNP selection method with the goal of maximizing the number of associated SNPs among the chosen follow-up SNPs. We show how the observed statistics of the original tag SNPs and human genetic variation reference data such as the HapMap Project can be utilized to identify the follow-up SNPs. We use simulated and real association studies based on the HapMap data and the Wellcome Trust Case Control Consortium to demonstrate that our method shows superior performance to the correlation- and distance-based traditional follow-up SNP selection approaches. Our method is publicly available at http://genetics.cs.ucla.edu/followupSNPs.  相似文献   

20.
Single nucleotide polymorphisms (SNPs) are believed to contain relevant information and have been therefore extensively used as genetic markers in population and conservation genetics, and molecular ecology studies. This study reports on the identification of potential SNPs in a diploid European sea bass Dicentrarchus labrax genome by using reference sequences from three assembled chromosomes and mapping all WGS datasets onto them (3× Sanger, 3× 454 and 20× SOLEXA). A total of 20,779 SNPs were identified over the 1469 gene loci and intergenic space analysed. Within chromosomes the occurrence of SNPs was the lowest in exons and higher in introns and intergenic regions, which may be explained by the fact, that coding regions are under strong selective pressure to maintain their biological function. The ratio of nonsynonymous to synonymous mutations was smaller than one for all the chromosomes, suggesting that most of deleterious nonsynonymous mutations were eliminated by negative selection. SNPs were not uniformly distributed over the chromosomes. Two chromosomes exhibited large regions with extremely low SNP density, which might represent homozygous regions in the diploid genome. The results of this study show how SNP detection can take profit from sequencing a single diploid individual, but also uncover the limits of such an approach. SNPs that have been identified will support marker development for genetic linkage mapping, population genetics and aquaculture related questions in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号