首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dorsalization of mesoderm induction by lithium   总被引:7,自引:0,他引:7  
Lithium dorsalizes the body plan of Xenopus embryos when administered at the 32-cell stage (K.R. Kao and R.P. Elinson, 1988, Dev. Biol. 127, 64-77). In this paper, we have attempted to determine the effects of lithium on mesoderm induction, in order to localize the target of action of lithium. In the 32-cell embryo, the vegetal-most tier 4 cells are able to induce dorsal development in the overlying, equatorial tier 3 cells (R.L. Gimlich and J.C. Gerhart, 1984, Dev. Biol. 104, 117-130). Our experiments show that microinjection of lithium into either tier 3 or tier 4 cells of ultraviolet-irradiated, dorsoanterior-deficient embryos rescues normal development. Lineage tracer studies show that only tier 3-injected cells contribute progeny to dorsal axial structures while tier 4-injected cells contribute progeny to endoderm. Sandwich explants between animal caps and ventral vegetal cells cause induction of large amounts of muscle in the explants if either caps or vegetal cells are pretreated with lithium. Similarly, fibroblast growth factor-mediated mesoderm induction is also modified by lithium so that muscle is induced instead of ventral mesoderm. We conclude that lithium dorsalizes the response of animal cells to mesoderm induction signals, while not acting directly as a mesoderm inducer itself. The target of action of lithium is likely the third tier of cells of the 32-cell embryo.  相似文献   

2.
Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm.  相似文献   

3.
Endodermal Nodal-related signals and mesoderm induction in Xenopus   总被引:7,自引:0,他引:7  
In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derrière, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.  相似文献   

4.
ARID domain proteins are members of a highly conserved family involved in chromatin remodeling and cell-fate determination. Dril1 is the founding member of the ARID family and is involved in developmental processes in both Drosophila and Caenorhabditis elegans. We describe the first embryological characterization of this gene in chordates. Dril1 mRNA expression is spatiotemporally regulated and is detected in the involuting mesoderm during gastrulation. Inhibition of dril1 by either a morpholino or an engrailed repressor-dril1 DNA binding domain fusion construct inhibits gastrulation and perturbs induction of the zygotic mesodermal marker Xbra and the organizer markers chordin, noggin, and Xlim1. Xenopus tropicalis dril1 morphants also exhibit impaired gastrulation and axial deficiencies, which can be rescued by coinjection of Xenopus laevis dril1 mRNA. Loss of dril1 inhibits the response of animal caps to activin and secondary axis induction by smad2. Dril1 depletion in animal caps prevents both the smad2-mediated induction of dorsal mesodermal and endodermal markers and the induction of ventral mesoderm by smad1. Mesoderm induction by eFGF is uninhibited in dril1 morphant caps, reflecting pathway specificity for dril1. These experiments identify dril1 as a novel regulator of TGF(beta) signaling and a vital component of mesodermal patterning and embryonic morphogenesis.  相似文献   

5.
6.
L Dale  G Matthews    A Colman 《The EMBO journal》1993,12(12):4471-4480
Vg1 is a maternal mRNA localized to the vegetal hemisphere of Xenopus embryos during blastula stages, a region responsible for the induction of mesoderm in the adjacent marginal zone. Its homology to the transforming growth factor-beta family, which includes several proteins with mesoderm-inducing activity, suggests a role for Vg1 as an endogenous mesoderm-inducing factor. However, expression of Vg1 protein in the animal hemisphere, following injection of synthetic mRNA, has no effect on development, and isolated animal caps are not mesodermalized. It is shown that Vg1 protein fails to form dimers and is not processed to release the putative bioactive domain. Furthermore it is shown that the N-terminal signal peptide of Vg1 is not cleaved following translocation into the ER, which may explain the failure of this protein to dimerize. To explore the role of Vg1 in amphibian development, a fusion protein has been made of the preproregion of Xenopus bone morphogenetic protein-4 and the putative bioactive C-terminal domain of Vg1. This fusion protein forms dimers and the C-terminal domain of Vg1 is secreted. Injection of this construct into Xenopus embryos induces the formation of a second dorsal axis and isolated animal caps are mesodermalized. The results are consistent with a role for Vg1 in mesoderm induction during Xenopus development.  相似文献   

7.
8.
Cells in the dorsal marginal zone of the amphibian embryo acquire the potential for mesoderm formation during the first few hours following fertilization. An examination of those early cell interactions may therefore provide insight on the mechanisms important for organization of axial structures. The formation of mesoderm (notochord, somites, and pronephros) was studied by combining blastomeres from the animal pole region of Xenopus embryos (32- to 512-cell stages) with blastomeres from different regions of the vegetal hemisphere. The frequency of notochord and somite development was similar in combinations made with dorsal or ventral blastomeres, or with both. Our results show that during early cleavage stages the ventral half of the vegetal hemisphere has the potential to organize axial structures, a property previously believed to be limited to the dorsal region.  相似文献   

9.
Members of the fibroblast growth factor (FGF) family induce mesoderm formation in explants of Xenopus embryonic ectoderm (animal caps). Recent studies have been directed at determining signaling pathways downstream of the FGF receptor that are important in mesoderm induction. We have recently shown that a point mutation in the FGF receptor changing tyrosine 766 to phenylalanine (Y/F mutation) abolishes phospholipase C-gamma (PLC-gamma) activation in mammalian cells. To explore the role of PLC-gamma activation in FGF-stimulated mesoderm induction, we constructed two chimeric receptors, each consisting of the extracellular portion of the platelet-derived growth factor beta receptor, with one having the transmembrane and intracellular portions of the wild-type FGF receptor 1 (PR-FR wt) and the other having the corresponding region of the Y/F766 mutant FGF receptor 1 (PR-FR Y/F766). When expressed in Xenopus oocytes, only PR-FR wt was able to mediate PLC gamma phosphorylation, inositol-1,4,5-trisphosphate accumulation, and calcium efflux in response to platelet-derived growth factor stimulation. However, both receptors mediated mesoderm induction in Xenopus animal caps as measured by cap elongation, muscle-specific actin mRNA induction, and skeletal muscle formation. These results demonstrate that PLC gamma activation by the FGF receptor is not required for FGF-stimulated mesoderm induction.  相似文献   

10.
11.
The interplay of fibroblast growth factor (FGF) and nodal signaling in the Xenopus gastrula marginal zone specifies distinct populations of presumptive mesodermal cells. Cells in the vegetal marginal zone, making up the presumptive leading edge mesoderm, are exposed to nodal signaling, as evidenced by SMAD2 activation, but do not appear to be exposed to FGF signaling, as evidenced by the lack of MAP kinase (MAPK) activation. However, in the animal marginal zone, activation of both SMAD2 and MAPK occurs. The differential activation of these two signaling pathways in the marginal zone results in the vegetal and animal marginal zones expressing different genes at gastrulation, and subsequently having different fates, with the vegetal marginal zone contributing to ventral mesoderm (e.g. ventral blood island) and the animal marginal zone giving rise to dorsal fates (e.g. notochord and somite). We report here the cloning of a cDNA encoding a novel nuclear protein, Xmenf, that is expressed in the vegetal marginal zone. The expression of Xmenf is induced by nodal signaling and negatively regulated by FGF signaling. Results from animal cap studies indicate that Xmenf plays a role in the pathway of ventral mesoderm induction in the vegetal marginal zone.  相似文献   

12.
D Kimelman  M Kirschner 《Cell》1987,51(5):869-877
The primary patterning event in early vertebrate development is the formation of the mesoderm and its subsequent induction of the neural tube. Classic experiments suggest that the vegetal region signals the animal hemisphere to diverge from the pathway of forming ectoderm to form mesoderm such as muscle. Here we show that bovine basic FGF has a limited capacity to induce muscle actin expression in animal hemisphere cells. This level of expression can be raised to levels normally induced in the embryo by another mammalian growth factor, TGF-beta, which by itself will not induce actin expression. We show that the Xenopus embryo contains an mRNA encoding a protein highly homologous to basic FGF. These results together with the identification of a maternal mRNA with strong homology to TGF-beta, suggest that molecules closely related to FGF and TGF-beta are the natural inducers of mesoderm in vertebrate development.  相似文献   

13.
The dorsal marginal zone (DMZ) of the amphibian embryo is a key embryonic region involved in body axis organization and neural induction. Using time-lapse microscopic magnetic resonance imaging (MRI), we follow the pregastrula movements that lead to the formation of the DMZ of the stage 10 Xenopus embryo. 2D and 3D MRI time-lapse series reveal that pregastrular movements change the tissue architecture of the DMZ at earlier stages and in a different fashion than previously appreciated. Beginning at stage 9, epiboly of the animal cap moves tissue into the dorsal but not into the ventral marginal zone, resulting in an asymmetry between the dorsal and the ventral sides. Time-lapse imaging of labeled blastomeres shows that the animal cap tissue moves into the superficial DMZ overlying the deeper mesendoderm of the DMZ. The shearing of superficial tissue over the deeper mesendoderm creates the radial/vertical arrangement of ectoderm outside of mesendoderm within the DMZ, which is independent of involution and prior to the formation of the dorsal blastoporal lip. This tilting of the DMZ is distinct from, but occurs synchronously with, the vegetal rotation of the vegetal cell mass [R., Winklbauer, M., Schürfeld (1999). "Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus." Development. 126, 3703-3713.]. We present a revised model of gastrulation movements in Xenopus laevis.  相似文献   

14.
15.
To obtain gene sequences controlling the early steps of amphibian neurogenesis, we have performed differential screening of a subtractive cDNA library prepared by a novel PCR-based method from a single presumptive neural plate of a Xenopus laevis late-gastrula embryo. As a result we have isolated a fragment of a novel homeobox gene (named XANF-1, for Xenopus anterior neural folds). This gene is expressed predominantly in the anterior part of the developing nervous system. Such preferential localization of XANF-1 mRNA is established from its initially homogenous distribution in ectoderm of early gastrula. This change in the expression pattern is conditioned by a differential influence of various mesoderm regions on ectoderm: anterior mesoderm activates XANF-1 expression in the overlying ectoderm, whereas posterior axial and ventral mesoderm areas inhibit it. The data obtained demonstrate for the first time that selection of genes for specific expression in the CNS of the early vertebrate embryo is affected not only by chordamesoderm (a neural inductor) but also by ventral mesoderm.  相似文献   

16.
In Xenopus laevis, dorsal cells that arise at the future dorsal side of an early cleaving embryo have already acquired the ability to cause axis formation. Since the distribution of cytoplasmic components is markedly heterogeneous in an egg and embryo, it has been supposed that the dorsal cells are endowed with the activity to form axial structures by inheriting a unique cytoplasmic component or components localized in the dorsal region of an egg or embryo. However, there has been no direct evidence for this. To examine the activity of the cytoplasm of dorsal cells, we injected cytoplasm (dorsal cytoplasm) from dorsal vegetal cells of a Xenopus 16-cell embryo into ventral vegetal cells of a simultaneous recipient. The cytoplasm caused secondary axis formation in 42% of recipients. Histological examination revealed that well-developed secondary axes included notochord, as well as a neural tube and somites. However, injection of cytoplasm of ventral vegetal cells never caused secondary axis and most recipients became normal tailbud embryos. Furthermore, about two-thirds of ventral isolated halves injected with dorsal cytoplasm formed axial structures. These results show that dorsal, but not ventral, cytoplasm contains the component or components responsible for axis formation. This can be the first step towards identifying the molecular basis of dorsal axis formation.  相似文献   

17.
18.
19.
A new fate map for mesodermal tissues in Xenopus laevis predicted that the prime meridian, which runs from the animal pole to the vegetal pole through the center of Spemann's organizer, is the embryo's anterior midline, not its dorsal midline (M. C. Lane and W. C. Smith, 1999, Development 126, 423-434). In this report, we demonstrate by lineage labeling that the column 1 blastomeres at st. 6, which populate the prime meridian, give rise to the anterior end of the embryo. In addition, we surgically isolate and culture tissue centered on this meridian from early gastrulae. This tissue forms a patterned head with morphologically distinct ventral and dorsal structures. In situ hybridization and immunostaining reveal that the cultured heads contain the anterior tissues of all three germ layers, correctly patterned. Regardless of how we dissect early gastrulae along meridians running from the animal to the vegetal pole, both the formation of head structures and the expression of anterior marker genes always segregate with the prime meridian passing through Spemann's organizer. The prime meridian also gives rise to dorsal, axial mesoderm, but not uniquely, as specification tests show that dorsal mesoderm arises in fragments of the embryo which exclude the prime meridian. These results support the hypothesis that the midline that bisects Spemann's organizer is the embryo's anterior midline.  相似文献   

20.
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号