首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Msx(muscle segment homeobox)基因的编码产物Msx蛋白质属于抑制性转录因子,参与多种生物学调控过程,如调控细胞的增殖与凋亡等。近期研究表明,Msx基因在胚胎着床中表达并发挥重要作用,Msx基因在胚胎着床的不同时间和空间特异性表达,从而调控胚胎着床。目前发现,Msx基因通过负向调节Wnt5a(Wnt family member 5a)来控制着床过程。Msx基因在控制胚胎滞育和再次激活胚胎着床过程中起到一个保守的分子开关作用。该文叙述Msx基因的分子生物学特征及其在体内特异性调控靶基因的机制,并探讨其主要生物学功能以及着重介绍其在胚胎着床及胚胎滞育中的作用和可能的潜在机制。  相似文献   

2.
哺乳动物胚胎着床是一个复杂而严密的过程,涉及到众多相关基因的表达与调控。传统的实验技术很难一次性对这些基因的表达状况做系统的分析。近年来,高通量基因表达分析方法在哺乳动物胚胎着床过程研究中得到了广泛的应用,在mRNA水平、microRNA水平和蛋白质水平都有大量的着床相关的因子被筛选出来。本文旨在对应用高通量方法的研究加以总结概括,为进一步研究哺乳动物胚胎着床的分子机理奠定基础。  相似文献   

3.
胚胎着床是非常复杂的生理过程,既需要胚胎具有着床能力,又需要子宫处于接受态。在围着床期,很多转录因子的表达发生变化。一个转录因子可以调控多个靶基因,一个基因也可同时受到多个转录因子的调控,从而形成复杂的基因表达网络调控机制,这对胚胎着床是非常重要的。文章对在围着床期起重要作用的转录因子进行了综述。  相似文献   

4.
许祺欣  苏仁伟 《生理学报》2020,72(1):91-104
哺乳动物的胚胎着床是胚胎与子宫内膜建立紧密联系的过程,是妊娠的起始和关键步骤,胚胎着床的失败直接导致妊娠失败和不孕。近年来,随着技术的进步,胚胎着床的研究工作取得了长足的进展。本文旨在对近10年取得的和胚胎着床有关的研究成果进行综述,重点关注包括腔上皮和腺上皮的子宫内膜上皮在着床过程中的变化、作用及分子机制,以及上皮细胞与胚胎滋养层细胞和子宫基质细胞之间的相互作用。  相似文献   

5.
哺乳动物的雌性生殖道包括输卵管、子宫、宫颈和阴道,是卵子受精、早期胚胎发育、胚胎着床、孕体发育和分娩等的重要路径,对于哺乳动物的生殖非常重要.雌性生殖器官的发育异常和病变将导致妊娠失败和胎儿死亡,因而了解雌性生殖道的发育过程和分子调节机制有利于理解生殖相关疾病和改善雌性生殖力.目前,利用基因敲除小鼠等多种实验技术,人们发现了调节雌性生殖道发育和导致生殖道疾病的部分关键基因和调节机理,本文将总结近年来雌性生殖道的发育分子调控机制方面的研究进展,并阐述多种信号通路在生殖道发育过程中的交叉调节网络.  相似文献   

6.
胚胎干细胞通过特殊内源性分子的表达,以及微环境中多种细胞因子和胞外基质的刺激,构成信号网络,共同调控自我更新.近年来,通过对Oct3/4、Nanog等胚胎干细胞特殊分子标记,以及LIF-STAT3,Wnt-β-连环素,BMP-Id等信号通路的研究,探讨了胚胎干细胞自我更新信号网络的分子机制.维持自我更新的关键在于胚胎干细胞生长微环境中的各种细胞因子和胞外基质的含量,以及细胞内源性特异分子表达量之间的平衡.  相似文献   

7.
哺乳动物的延迟着床及其分子调控   总被引:2,自引:0,他引:2  
延迟着床是指胚胎在发育到胚泡阶段时暂时进入休眠状态,并不立即着床。在这个时期,胚泡或者停止细胞分化与增长,以使其大小及内部细胞数量保持稳定,或者经历一个少量细胞发生分化的缓慢增长阶段。共有7个目中的近100种哺乳动物有延迟着床现象。延迟着床受光周期、哺乳刺激和营养等各方面因素的影响,同时还受激素和多种生长因子等调节。虽然各种动物中延迟着床的机制各不相同,但延迟着床均可有效地延长妊娠期,使该物种在一年中最适宜的时期进行交配和产仔。利用在小鼠或大鼠中建立的延迟着床模型,可模拟正常的胚胎着床过程,有利于研究胚胎着床过程中的分子调控机制。  相似文献   

8.
9.
胚胎植入是人类和哺乳动物生殖过程中的重要步骤,其分子机制至今尚未完全明了.近年来,功能基因组学和蛋白质组学等高通量检测新技术已广泛应用于胚胎植入机制的研究领域.通过从整体上观察胚胎植入过程中基因和蛋白质表达的变化,全面地筛选出大量胚胎植入相关因子,从而为在分子水平上阐明胚胎植入过程中的调控网络打下了基础.  相似文献   

10.
细胞周期蛋白是真核细胞周期循环中主要的调节因子,它们参与细胞周期的精密调控,维持细胞正常生长及发育平衡。近年来发现,细胞周期蛋白与哺乳动物生殖有着密切的关系,本文简要论述了细胞周期蛋白与配子发生、早期胚胎发育、胚胎着床、蜕膜化等的关系,以及细胞周期蛋白在生殖系统中的表达与调控。  相似文献   

11.
Lipid signaling in embryo implantation   总被引:2,自引:0,他引:2  
A reciprocal interaction between the implantation-competent blastocyst and the receptive uterus is required for successful implantation. Although various molecular pathways are known to participate in this cross-talk, a comprehensive understanding of the implantation process is still missing. Gene expression studies and genetically engineered mouse models have provided evidence that lipid mediators serve as important signaling molecules in coordinating the series of events during early pregnancy including preimplantation embryo formation and development, implantation and postimplantation growth. This review focuses on the roles of two groups of lipid mediators, prostaglandins (PGs) and endocannabinoids, during early pregnancy. Our laboratory has shown that while PGs generated by the cPLA2-cyclooxygenase (COX) system are essential to ovulation, fertilization, and implantation, endocannabinoids are important for synchronizing preimplantation embryo development with uterine receptivity for implantation. A better understanding of these molecular signaling pathways is hoped to generate new strategies to correct implantation failure and improve pregnancy rates in women.  相似文献   

12.
13.
Crk family adaptors are widely expressed and mediate the timely formation of signal transduction protein complexes upon a variety of extracellular stimuli, including various growth and differentiation factors. The window of implantation is the favorable time period when the uterus develops a receptive approach to the invading embryo. Various signaling cascades are likely to become active at the window of implantation both in the uterus and the embryo. This helps create maternal embryo dialogue leading to successful embryo implantation. In this study we report for the first time the presence and nuclear translocation of the adaptor molecule CrkL both in the uterine and embryonic partners at the window of implantation. We also report that estrogen, which initiates and guides crucial changes in the uterus and the embryo at the window of receptivity, causes a massive surge in the expression and subsequent nuclear translocation of CrkL. We have also identified the existence of one LXXLL motif in the CrkL amino acid sequence and a single LXD is sufficient for activation by the estrogen receptor. This is suggestive that CrkL can bind to estrogen receptors and act as a coactivator.  相似文献   

14.
Embryo implantation is a complicated event that relies on two critical factors: the competent blastocyst and the receptive uterus. Successful implantation results from tight coordination of these two factors. The maternal hormone environment of the uterus and molecular cross‐talk between the embryo and uterine tissue play pivotal roles in implantation. Here we showed that regulator of G‐protein signaling 2 (RGS2), a member of ubiquitous family of proteins that regulate G‐protein activation, plays an important role in embryo implantation by interfering in the cross‐talk between the embryo and uterine tissue. RGS2 expression increased during the implantation process, and was higher in the implant site than at the nonimplantation site. Meanwhile, ovariectomized (OVX) mice exhibited higher expression of RGS2 in the uterus. Exogenous 17β‐estradiol and progesterone in OVX mice downregulated the expression of RGS2. Treatment with exogenous 17β‐estradiol alone caused uterine RGS2 messenger RNA levels of OVX mice to return to those of normal female mice; when these mice were treated with progesterone or 17β‐estradiol plus progesterone, RGS2 levels rose. Downregulation of Rgs2 by small interfering RNA in an in vitro coculture system of decidualized endometrial stromal cells and blastocysts inhibited blastocyst outgrowth by restricting trophoblast spreading, suggesting a mechanism by which RGS2 regulates embryo implantation.  相似文献   

15.
Locally secreted cytokines of both the embryonic and the endometrial origin control the implantation process. The defects in their signaling that lead to unfavorable environment within the uterus may cause embryo implantation failure. The leukemia inhibitory factor (LIF), interleukin-11 (IL-11) as well as IL-12/IL-15/IL-18 system are regarded to be important signaling vectors. LIF plays an essential role in the preimplantation embryo development and the blastocyst implantation and its gene mutations in women contribute to the implantation failure and subsequent infertility. IL-11 signaling has been shown to be required for the uterine decidualization response as well as for the hatching and attachment of blastocysts. The IL-12/IL-15/IL-18 system interacts with endometrial leukocytes, particularly with NK cells, and influences directly the local angiogenesis and tissue remodeling. Differences in the levels of endometrial leukocytic subpopulations and in the patterns of intra-uterine cytokine concentrations that are observed between fertile and infertile women contribute to infertility probably by affecting the embryonic maternal dialogue during the implantation and early placentation period. Focusing on this cross talk promises to open new era in assisted reproduction techniques that will be based on diagnostics of missing signaling molecules and impairments of uterine receptivity as well as on therapeutic applications of individualized embryo culture and transfer media.  相似文献   

16.
Beta-catenin, the mammalian homolog of Drosophila armadillo protein, was first identified as a cadherin-associated protein at cell-cell junctions. Another function of beta-catenin is the transduction of cytosolic signals to the nucleus in a variety of cellular contexts, which usually are elicited by the active form of beta-catenin. The aim of the present study was to examine the potential role of active beta-catenin in the mouse embryo and uterus during embryo implantation. Active beta-catenin was detected differentially in mouse embryos and uteri during the peri-implantation period. Aberrant activation of beta-catenin by LiCl, a well-known glycogen synthase kinase-3 inhibitor, significantly inhibited blastocyst hatching and subsequent adhesion and outgrowth on fibronectin. Results obtained from pseudopregnant and implantation-delayed mice imply an important role for implanting blastocysts in the temporal and spatial changes of active beta-catenin in the uterus during the window of implantation. Collectively, these results suggest that the beta-catenin signaling pathway is inhibited in both blastocyst and uterus during the window of implantation, which may represent a new mechanism to synchronize the development of preimplantation embryos and differentiation of the uterus during this process.  相似文献   

17.
18.
Physiological and molecular determinants of embryo implantation   总被引:1,自引:0,他引:1  
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo–uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.  相似文献   

19.
Preimplantation embryo development to the blastocyst stage and uterine differentiation to the receptive state are prerequisites for embryo implantation. Burgeoning evidence suggests that endocannabinoid signaling is critical to early pregnancy events. Anandamide (N-arachidonoylethanolamine) and 2-AG (2-arachidonoylglycerol) are two major endocannabinoids that bind to and activate G-protein coupled cannabinoid receptors CB1 and CB2. We have previously shown that a physiological tone of anandamide is critical to preimplantation events in mice, since either silencing or amplification of anandamide signaling causes retarded development and oviductal retention of embryos via CB1, leading to deferred implantation and compromised pregnancy outcome. Whether 2-AG, which also influences many biological functions, has any effects on early pregnancy remains unknown. Furthermore, mechanisms by which differential uterine endocannabinoid gradients are established under changing pregnancy state is not clearly understood. We show here that 2-AG is present at levels one order of magnitude higher than those of anandamide in the mouse uterus, but with similar patterns as anandamide, i.e. lower levels at implantation sites and higher at interimplantation sites. We also provide evidence that region- and stage-specific uterine expression of N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), and sn-1-diacylglycerol (DAG) lipase alpha (DAGLalpha) and monoacylglycerol lipase (MAGL) for synthesis and hydrolysis of anandamide and 2-AG, respectively, creates endocannabinoid gradients conducive to implantation. Our genetic evidence suggests that FAAH is the major degrading enzyme for anandamide, whereas COX-2, MAGL and to some extent COX-1 participate in metabolizing 2-AG in the pregnant uterus. The results suggest that aberrant functioning of these pathways impacting uterine anandamide and/or 2-AG levels would compromise pregnancy outcome.  相似文献   

20.
Successful implantation absolutely depends on the reciprocal interaction between the implantation-competent blastocyst and the receptive uterus. Expression and gene targeting studies have shown that leukemia inhibitory factor (LIF), a cytokine of the IL-6 family, and Hoxa-10, an abdominalB-like homeobox gene, are crucial to implantation and decidualization in mice. Using these mutant mice, we sought to determine the importance of Msx-1 (another homeobox gene formerly known as Hox-7.1) and of Wnt4 (a ligand of the Wnt family) signaling in implantation because of their reported functions during development. We observed that Msx-1, Wnt4, and a Wnt antagonist sFRP4 are differentially expressed in the mouse uterus during the periimplantation period, suggesting their role in implantation. In addition, we observed an aberrant uterine expression of Msx-1 and sFRP4 in Lif mutant mice, and of Wnt4 and sFRP4 in Hoxa-10 mutant mice, further reinforcing the importance of these signaling pathways in implantation. Collectively, the present results provide evidence for a novel cytokine-homeotic-Wnt signaling network in implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号