首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the membrane dipole potential (φ d ) on conductance and the steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate, and chloride was shown. The φ d value varied with the introduction of phloretin to membrane bathing solutions, which reduces φ d and RH 421, which increases φ d . It was established that, in all studied systems, an increase in the membrane dipole potential caused a decrease in the steady-state number of open channels. In systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are one order lower than those of systems that contain sodium chloride. At the same time, the conductance (g) of single SRE channels in the membranes bathed in NaCl solution increases with increase in φ d and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the φ d . The latter is due to the lack of cation/anion selectivity of the SRE channels in these systems. The different channel-forming activity of SRE in the experimental systems is determined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.  相似文献   

2.
The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.  相似文献   

3.
Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues.  相似文献   

4.
The effect of membrane dipole potential (? d ) on the properties of ion channels formed in bilayer lipid membranes by syringomycin E (SRE), a toxin produced by Pseudomonas syringae, has been studied. It has been shown that ? d affects the conductance and lifetime of elementary SRE channels as well as their cluster organization, in particular, the number of elementary channels synchronously opened in the cluster and the lifetime of these clusters. The channel-forming activity of SRE was found to be ? d -dependent. The analysis of experimental data has revealed that (i) the mechanisms of the observed effects involve the dipole-dipole and charge-dipole interactions responsible for the cooperative functioning of the elementary SRE channels; (ii) about 95% of membrane dipole potential is shielded in the SRE pore; and (iii) the channel-forming activity of SRE is mainly determined by the gating charge of the SRE channels. At the same time, the partition coefficient for the toxin distribution between the membrane and aqueous phase as well as the chemical component of the channel formation work are also responsible for the ? d -dependence of the SRE channel forming activity.  相似文献   

5.
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl or anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter.  相似文献   

6.
There is growing evidence indicating that the pore structure of voltage-gated ion channels (VGICs) influences gating besides their conductance. Regarding low voltage-activated (LVA) Ca2+ channels, it has been demonstrated that substitutions of the pore aspartate (D) by a glutamate (D-to-E substitution) in domains III and IV alter channel gating properties such as a positive shift in the channel activation voltage dependence. In the present report, we evaluated the effects of E-to-D substitution in domains I and II on the CaV3.1 channel gating properties. Our results indicate that substitutions in these two domains differentially modify the gating properties of CaV3.1 channels. The channel with a single mutation in domain I (DEDD) presented slower activation and faster inactivation kinetics and a slower recovery from inactivation, as compared with the WT channel. In contrast, the single mutant in domain II (EDDD) presented a small but significant negative shift of activation voltage dependence with faster activation and slower inactivation kinetics. Finally, the double mutant channel (DDDD) presented somehow intermediate properties with respect to the two single mutants but with fastest deactivation kinetics. Overall, our results indicate that single amino acid modification of the selectivity filter of LVA Ca2+ channels in distinct domains differentially influence their gating properties, supporting a pore pseudo-symmetry.  相似文献   

7.
Modification of the calcium channel of the somatic membrane of molluscan neurons under the influence of EDTA and other Ca-binding agents was investigated. The results showed that there are two selective filters in the calcium channel of this membrane. The first is located near the outer pore of the calcium channel and it binds bivalent cations in the order:pK Ca:pK Sr:pK Ba:pK Mg=6.6:5.5:4.8:4.2. This external filter regulates selectivity of the channel relative to the charge of the cation and it conjecturally contains several carboxyl groups. The second selective filter lies inside the channel and regulates permeability for ions with a single charge. It is suggested that the structure of the inner filter closely resembles that postulated by Hille for the selective filter of the sodium channel, and that it contains one carboxyl group. The results of investigation of the effect of Ca++, Cd++, and H+ on the fast sodium current of the somatic membrane showed that it is not blocked by these ions, but the decrease observed in its amplitude is connected with a change in the membrane surface potential and a corresponding change in the juxtamembranous concentration of carrier ions. On the basis of the experimental results it is postulated that the selective filter of the fast sodium channel of the molluscan neuron somatic membrane does not contain a carboxyl group.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 420–427, July–August, 1983.  相似文献   

8.
Sphingolipids with long chain bases hydroxylated at the C4 position are a requisite for the yeast, Saccharomyces cerevisia, to be sensitive to the ion channel forming antifungal agent, syringomycin E (SRE). A mutant S. cerevisiae strain, Δsyr2, having sphingolipids with a sphingoid base devoid of C4-hydroxylation, is resistant to SRE. To explore the mechanism of this resistance, we investigated the channel forming activity of SRE in lipid bilayers of varying composition. We found that the addition of sphingolipid-rich fraction from Δsyr2 to the membrane-forming solution (DOPS/DOPE/ergosterol) resulted in lipid bilayers with lower sensitivity to SRE compared with those containing sphingolipid fraction from wild-type S. cerevisiae. Other conditions being equal, the rate of increase of bilayer conductance was about 40 times slower, and the number of SRE channels was about 40 times less, with membranes containing Δsyr2 versus wild-type sphingolipids. Δsyr2 sphingolipids altered neither SRE single channel conductance nor the gating charge but the ability of SRE channels to open synchronously was diminished. The results suggest that the resistance of the Δsyr2 mutant to SRE may be partly due to the ability of sphingolipids without the C4 hydroxyl group to decrease the channel forming activity of SRE.  相似文献   

9.
CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl, Br, SCN, and I) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate.  相似文献   

10.
We observed intermediate conductance channels in approximately 20% of successful patch-clamp seals made on collecting tubules dissected from Ambystoma adapted to 50 mm potassium. These channels were rarely observed in collecting tubules taken from animals which were maintained in tap water. Potassium-adaptation either leads to an increase in the number of channels present or activates quiescent channels. In cell-attached patches the conductance averaged 30.3 ± 2.4 (9) pS. Since replacement of the chloride in the patch pipette with gluconate did not change the conductance, the channel carries cations, not anions. Notably, channel activity was observed at both positive and negative pipette voltages. When the pipette was voltage clamped at 0 mV or positive voltages, the current was directed inward, consistent with the movement of sodium into the cell. The pipette voltage at which the polarity of the current reversed (movement of potassium into the pipette) was −29.6 ± 6.5(9) mV. Open probability at 0 mV pipette voltage was 0.08 ± 0.03 and was unaffected when the apical membrane was exposed to either 2 × 10−6 or 2 × 10−5 m of amiloride. Exposure of the basolateral surface of the tubule to a saline containing 15 mm potassium caused a significant increase (P less than 0.001) in the open probability of these channels to 0.139 ± 0.002 without affecting the conductance of the apical channel. These data illustrate the presence of an intermediate conductance, poorly selective, amiloride-insensitive cation channel in native vertebrate collecting tubule. We postulate that, at least in amphibia, this channel may be used to secrete potassium. Received: 14 January 2000/Revised: 16 June 2000  相似文献   

11.
Striking structural differences between voltage-gated sodium (Nav) channels from prokaryotes (homotetramers) and eukaryotes (asymmetric, four-domain proteins) suggest the likelihood of different molecular mechanisms for common functions. For these two channel families, our data show similar selectivity sequences among alkali cations (relative permeability, Pion/PNa) and asymmetric, bi-ionic reversal potentials when the Na/K gradient is reversed. We performed coordinated experimental and computational studies, respectively, on the prokaryotic Nav channels NaChBac and NavAb. NaChBac shows an “anomalous,” nonmonotonic mole-fraction dependence in the presence of certain sodium–potassium mixtures; to our knowledge, no comparable observation has been reported for eukaryotic Nav channels. NaChBac’s preferential selectivity for sodium is reduced either by partial titration of its highly charged selectivity filter, when extracellular pH is lowered from 7.4 to 5.8, or by perturbation—likely steric—associated with a nominally electro-neutral substitution in the selectivity filter (E191D). Although no single molecular feature or energetic parameter appears to dominate, our atomistic simulations, based on the published NavAb crystal structure, revealed factors that may contribute to the normally observed selectivity for Na over K. These include: (a) a thermodynamic penalty to exchange one K+ for one Na+ in the wild-type (WT) channel, increasing the relative likelihood of Na+ occupying the binding site; (b) a small tendency toward weaker ion binding to the selectivity filter in Na–K mixtures, consistent with the higher conductance observed with both sodium and potassium present; and (c) integrated 1-D potentials of mean force for sodium or potassium movement that show less separation for the less selective E/D mutant than for WT. Overall, tight binding of a single favored ion to the selectivity filter, together with crucial inter-ion interactions within the pore, suggests that prokaryotic Nav channels use a selective strategy more akin to those of eukaryotic calcium and potassium channels than that of eukaryotic Nav channels.  相似文献   

12.
E Reuveny  Y N Jan    L Y Jan 《Biophysical journal》1996,70(2):754-761
Inwardly rectifying K+ channels are highly selective for K+ ions and show strong interaction with ions in the pore. Both features are important for the physiological functions of these channels and pose intriguing mechanistic questions of ion permeation. The aspartate residue in the second putative transmembrane segment of the IRK1 inwardly rectifying K+ channel, previously implicated in inward rectification gating due to cytoplasmic Mg2+ and polyamine block, is found in this study to be crucial for the channel's ability to distinguish between K+ and Rb+ ions. Mutation of this residue also perturbs the interaction between the channel pore and the Sr2+ blocking ion. Our studies suggest that this aspartate residue contributes to a selectivity filter near the cytoplasmic end of the pore.  相似文献   

13.
Summary The plant pathogenic bacteriumClavibacter michiganense ssp. nebraskense secretes an anion channel forming activity (CFA) into the culture fluid. The CFA inserts spontaneously into planar lipid membranes when culture fluid of this species is added to the aqueous phase of the bilayer chamber. The channels formed are highly anion selective. The conductance decreases for larger anions (Cl>SCN>SO 4 2– ) and is practically zero for gluconate. The channels show a unique voltage dependence : (i) The single-channel conductance increases linearly with voltage up to 200 mV saturating at 250 mV with 25±1 pS (300mm KCl). The channel is closed at negative voltage relative to the side of insertion (diode-typeI–V curve). (ii) The average number of open channels also increases with voltage. The Poisson distribution of channel numbers indicates independent opening of the channels.Channel activity can be abolished by protease treatment of the planar bilayer. The channels can be blocked by indanyloxyacetic acid (IAA-94) and by pH>10. The CFA was purified yielding one major band on the SDS gel with a relative molecular mass of 65,000. The putative involvement of the CFA in the toxicity of this plant pathogen is discussed and compared to other toxins like colicins and to the diphtheria toxin group.  相似文献   

14.
Understanding of the molecular architecture necessary for selective K(+) permeation through the pore of ion channels is based primarily on analysis of the crystal structure of the bacterial K(+) channel KcsA, and structure:function studies of cloned animal K(+) channels. Little is known about the conduction properties of a large family of plant proteins with structural similarities to cloned animal cyclic nucleotide-gated channels (CNGCs). Animal CNGCs are nonselective cation channels that do not discriminate between Na(+) and K(+) permeation. These channels all have the same triplet of amino acids in the channel pore ion selectivity filter, and this sequence is different from that of the selectivity filter found in K(+)-selective channels. Plant CNGCs have unique pore selectivity filters; unlike those found in any other family of channels. At present, the significance of the unique pore selectivity filters of plant CNGCs, with regard to discrimination between Na(+) and K(+) permeation is unresolved. Here, we present an electrophysiological analysis of several members of this protein family; identifying the first cloned plant channel (AtCNGC1) that conducts Na(+). Another member of this ion channel family (AtCNGC2) is shown to have a selectivity filter that provides a heretofore unknown molecular basis for discrimination between K(+) and Na(+) permeation. Specific amino acids within the AtCNGC2 pore selectivity filter (Asn-416, Asp-417) are demonstrated to facilitate K(+) over Na(+) conductance. The selectivity filter of AtCNGC2 represents an alternative mechanism to the well-known GYG amino acid triplet of K(+) channels that has been identified as the critical basis for K(+) over Na(+) permeation through the pore of ion channels.  相似文献   

15.
16.
K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance.  相似文献   

17.
Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction.  相似文献   

18.
The mechanism of Cl ion permeation through single cystic fibrosis transmembrane conductance regulator (CFTR) channels was studied using the channel-blocking ion gluconate. High concentrations of intracellular gluconate ions cause a rapid, voltage-dependent block of CFTR Cl channels by binding to a site ∼40% of the way through the transmembrane electric field. The affinity of gluconate block was influenced by both intracellular and extracellular Cl concentration. Increasing extracellular Cl concentration reduced intracellular gluconate affinity, suggesting that a repulsive interaction occurs between Cl and gluconate ions within the channel pore, an effect that would require the pore to be capable of holding more than one ion simultaneously. This effect of extracellular Cl is not shared by extracellular gluconate ions, suggesting that gluconate is unable to enter the pore from the outside. Increasing the intracellular Cl concentration also reduced the affinity of intracellular gluconate block, consistent with competition between intracellular Cl and gluconate ions for a common binding site in the pore. Based on this evidence that CFTR is a multi-ion pore, we have analyzed Cl permeation and gluconate block using discrete-state models with multiple occupancy. Both two- and three-site models were able to reproduce all of the experimental data with similar accuracy, including the dependence of blocker affinity on external Cl (but not gluconate) ions and the dependence of channel conductance on Cl concentration. The three-site model was also able to predict block by internal and external thiocyanate (SCN) ions and anomalous mole fraction behavior seen in Cl/SCN mixtures.  相似文献   

19.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   

20.
The NaChBac prokaryotic sodium channel appears to be a descendent of an evolutionary link between voltage-gated KV and CaV channels. Like KV channels, four identical six-transmembrane subunits comprise the NaChBac channel, but its selectivity filter possesses a signature sequence of eukaryotic CaV channels. We developed structural models of the NaChBac channel in closed and open conformations, using K+-channel crystal structures as initial templates. Our models were also consistent with numerous experimental results and modeling criteria. This study concerns the pore domain. The major differences between our models and K+ crystal structures involve the latter portion of the selectivity filter and the bend region in S6 of the open conformation. These NaChBac models may serve as a stepping stone between K+ channels of known structure and NaV, CaV, and TRP channels of unknown structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号