首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We identify and describe the distribution of 12 genetically distinct malaria parasite lineages over islands and hosts in four common passerine birds in the Lesser Antilles. Combined parasite prevalence demonstrates strong host effects, little or no island effect, and a significant host-times-island interaction, indicating independent outcomes of host-parasite infections among island populations of the same host species. Host- and/or island-specific parasite lineages do not explain these host-parasite associations; rather, individual lineages themselves demonstrate the same type of independent interactions. Unlike overall prevalence, individual parasite lineages show considerable geographic structure (i.e., island effects) as well as species effects indicating that parasite lineages are constrained in their ability to move between hosts and locations. Together, our results suggest an upper limit to the number of host individuals that malaria parasites, as a community, can infect. Within this limit, however, the relative frequency of the different lineages varies reflecting fine scale interactions between host and parasite populations. Patterns of host-parasite associations within this system suggest both historical co-evolution and ecologically dynamic and independent host-parasite interactions.  相似文献   

2.
How geographically widespread biological communities assemble remains a major question in ecology. Do parallel population histories allow sustained interactions (such as host-parasite or plant-pollinator) among species, or do discordant histories necessarily interrupt them? Though few empirical data exist, these issues are central to our understanding of multispecies evolutionary dynamics. Here we use hierarchical approximate Bayesian analysis of DNA sequence data for 12 herbivores and 19 parasitoids to reconstruct the assembly of an insect community spanning the Western Palearctic and assess the support for alternative host tracking and ecological sorting hypotheses. We show that assembly occurred primarily by delayed host tracking from a shared eastern origin. Herbivores escaped their enemies for millennia before parasitoid pursuit restored initial associations, with generalist parasitoids no better able to track their hosts than specialists. In contrast, ecological sorting played only a minor role. Substantial turnover in host-parasitoid associations means that coevolution must have been diffuse, probably contributing to the parasitoid generalism seen in this and similar systems. Reintegration of parasitoids after host escape shows these communities to have been unsaturated throughout their history, arguing against major roles for parasitoid niche evolution or competition during community assembly.  相似文献   

3.
Understanding the role of interspecific interactions in shaping ecological communities is one of the central goals in community ecology. In fungal communities, measuring interspecific interactions directly is challenging because these communities are composed of large numbers of species, many of which are unculturable. An indirect way of assessing the role of interspecific interactions in determining community structure is to identify the species co‐occurrences that are not constrained by environmental conditions. In this study, we investigated co‐occurrences among root‐associated fungi, asking whether fungi co‐occur more or less strongly than expected based on the environmental conditions and the host plant species examined. We generated molecular data on root‐associated fungi of five plant species evenly sampled along an elevational gradient at a high arctic site. We analysed the data using a joint species distribution modelling approach that allowed us to identify those co‐occurrences that could be explained by the environmental conditions and the host plant species, as well as those co‐occurrences that remained unexplained and thus more probably reflect interactive associations. Our results indicate that not only negative but also positive interactions play an important role in shaping microbial communities in arctic plant roots. In particular, we found that mycorrhizal fungi are especially prone to positively co‐occur with other fungal species. Our results bring new understanding to the structure of arctic interaction networks by suggesting that interactions among root‐associated fungi are predominantly positive.  相似文献   

4.
Phytophagous insects generally feed on a restricted range of host plants, using a number of different sensory and behavioural mechanisms to locate and recognize their host plants. Phloem-feeding aphids have been shown to exhibit genetic variation for host preference of different plant species and genetic variation within a plant species can also have an effect on aphid preference and acceptance. It is known that genotypic interactions between barley genotypes and Sitobion avenae aphid genotypes influence aphid fitness, but it is unknown if these different aphid genotypes exhibit active host choice (preference) for the different barley genotypes. Active host choice by aphid genotypes for particular plant genotypes would lead to assortative association (non-random association) between the different aphid and plant genotypes. The performance of each aphid genotype on the plant genotypes also has the ability to enhance these interactions, especially if the aphid genotypes choose the plant genotype that also infers the greatest fitness. In this study, we demonstrate that different aphid genotypes exhibit differential preference and performance for different barley genotypes. Three out of four aphid genotypes exhibited preference for (or against) particular barley genotypes that were not concordant with differences in their reproductive rate on the specific barley genotype. This suggests active host choice of aphids is the primary mechanism for the observed pattern of non-random associations between aphid and barley genotypes. In a community context, such genetic associations between the aphids and barley can lead to population-level changes within the aphid species. These interactions may also have evolutionary effects on the surrounding interacting community, especially in ecosystems of limited species and genetic diversity.  相似文献   

5.
1. Individuals of free-living organisms are commonly infected by multiple parasite species. Under such circumstances, positive or negative associations between the species are possible because of direct or indirect interactions, details in parasite transmission ecology and host-mediated factors. One possible mechanism underlying these processes is host immunity, but its role in shaping these associations has rarely been tackled experimentally.
2. In this study, we tested the effect of host immunization on associations between trematode parasites infecting eyes of fish. We first analysed the associations between three species ( Diplostomum spathaceum , Diplostomum gasterostei and Tylodelphys clavata ) in wild hosts, roach ( Rutilus rutilus ) and perch ( Perca fluviatilis ). Second, using rainbow trout ( Oncorhynchus mykiss ) as a model fish species, we experimentally investigated how sequential immunization of the host (i.e. one parasite species infects and immunizes the host first) could affect the associations between two of the species.
3. The results indicated that most of the associations were positive in wild hosts, which supports between-individual variation in host susceptibility, rather than competitive exclusion between the parasite species. However, positive associations were more common in roach than in perch, possibly reflecting differences in ecological conditions of exposure between the host species. The experimental data showed that positive associations between two of the species were eroded by host immunization against one of the parasite species.
4. We conclude that sequential immunization of hosts has a marked effect on interspecific parasite associations and basically can determine if positive associations are detected or not. This implies that correlative results suggesting non-interactive community structure in general may be obscured by the sequence of previous parasite exposure and corresponding dynamics of host immunization.  相似文献   

6.
The relationship between humans and their oral microflora begins shortly after birth and lasts a lifetime. Up until fairly recently, the associations between the host and oral bacteria were considered in terms of a multiplicity of single species interactions. However, it is becoming more apparent that the oral microbes comprise a complex community, and that oral health or disease depends on the interface between the host and the microbial community as a whole. Although it is important to continue studies of the pathogenic properties of specific microbes, these are relevant only in the context of the properties of the community within which they reside. Understanding the microbial communities that drive sickness or health is a key to combating human oral diseases.  相似文献   

7.
Phylogenetic distance among host species represents a proxy for host traits that act as biotic filters to shape host‐associated microbiome community structure. However, teasing apart potential biotic assembly mechanisms, such as host specificity or local species interactions, from abiotic factors, such as environmental specificity or dispersal barriers, in hyperdiverse, horizontally transmitted microbiomes remains a challenge. In this study, we tested whether host phylogenetic relatedness among 18 native Asteraceae plant species and spatial distance between replicated plots in a common garden affects foliar fungal endophyte (FFE) community structure. We found that FFE community structure varied significantly among host species, as well as host tribes, but not among host subfamilies. However, FFE community dissimilarity between host individuals was not significantly correlated with phylogenetic distance between host species. There was a significant effect of spatial distance among host individuals on FFE community dissimilarity within the common garden. The significant differences in FFE community structure among host species, but lack of a significant host phylogenetic effect, suggest functional differences among host species not accounted for by host phylogenetic distance, such as metabolic traits or phenology, may drive FFE community dissimilarity. Overall, our results indicate that host species identity and the spatial distance between plants can determine the similarity of their microbiomes, even across a single experimental field, but that host phylogeny is not closely tied to FFE community divergence in native Asteraceae.  相似文献   

8.
Symbiotic interactions between insects and bacteria have long fascinated ecologists. Aphids have emerged as the model system on which to study the effect of endosymbiotic bacteria on their hosts. Aphid‐symbiont interactions are ecologically interesting as aphids host multiple secondary symbionts that can provide broad benefits, such as protection against heat stress or specialist natural enemies (parasitic wasps and entomopathogenic fungi). There are nine common aphid secondary symbionts and individual aphids host on average 1–2 symbionts. A cost‐benefit trade‐off for hosting symbionts is thought to explain why not all aphids host every possible symbiont in a population. Both positive and negative associations between various symbionts occur, and this could happen due to increased costs when cohosting certain combinations or as a consequence of competitive interactions between the symbionts within a host. In this issue of Molecular Ecology, Mathé‐Hubert, Kaech, Hertaeg, Jaenike, and Vorburger (2019) use data on the symbiont status of field‐collected aphids to inform a model on the evolution of symbiont co‐occurrence. They vary the effective female population size as well as the rate of horizontal and maternal transmission to infer the relative impact of symbiont‐symbiont interactions versus random drift. Additional data analysis revisits an association between two symbionts in a fruit fly species using a long‐term data set to highlight that such interactions are not limited to aphids.  相似文献   

9.
Many symbiotic associations involve microorganisms which cannot be cultivated on laboratory media. These organisms remained little known until the recent advent of methods of recombinant DNA analysis and molecular phylogenetics. Applications of these methods to endosymbionts have resulted in substantial new insights concerning the genetics and evolution of these organisms. This communication provides a listing of recently studied associations involving non-cultivable symbionts. The associations involve a diverse set of host taxa and a wide range of effects, both favorable and deleterious, on host biology. Among beneficial endosymbionts, a variety of nutritional interactions have been documented. One type of association has been demonstrated for a number of animal hosts, namely endosymbioses that result from a single infection of an ancestral host by a prokaryote. In these associations, endosymbionts are transmitted maternally and are not exchanged between host lineages, resulting in a long-term pattern of codiversification of hosts and endosymbionts. The association between aphids and non-cultivable prokaryotic endosymbionts is a well studied example of such a symbiosis.  相似文献   

10.
Within a community, the abundance of any given species depends in large part on a network of direct and indirect, positive and negative interactions with other species, including shared enemies. In communities where experimental manipulations are often impossible (e.g., parasite communities), census data can be used to evaluate the strength or frequency of positive and negative associations among species. In ectoparasite communities, competitive associations can arise because of limited space or food, but facilitative associations can also exist if one species suppresses host immune defenses. In addition, positive associations among parasites could arise merely due to shared preferences for the same host, without any interaction going on. We used census data from 28 regional surveys of gamasid mites parasitic on small mammals throughout the Palaearctic, to assess how the abundance of individual mite species is influenced by the abundance and diversity of other mite species on the same host. After controlling for several confounding variables, the abundance of individual mite species was generally positively correlated with the combined abundances of all other mite species in the community. This trend was confirmed by meta-analysis of the results obtained for separate mite species. In contrast, there were generally no consistent relationships between the abundance of individual mite species and either the species richness or taxonomic diversity of the community in which they occur. These patterns were independent of mite feeding mode. Our results indicate either that synergistic facilitative interactions among mites increase the host’s susceptibility to further attacks (e.g., via immunosuppression) and lead to different species all having increased abundance on the same host, or that certain characteristics make some host species preferred habitats for many parasite species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Temperature has strong effects on metabolic processes of individuals and demographics of populations, but effects on ecological communities are not well known. Many economically and ecologically important pest species have obligate associations with other organisms; therefore, effects of temperature on these species might be mediated by strong interactions. The southern pine beetle (Dendroctonus frontalis Zimmermann) harbors a rich community of phoretic mites and fungi that are linked by many strong direct and indirect interactions, providing multiple pathways for temperature to affect the system. We tested the effects of temperature on this community by manipulating communities within naturally infested sections of pine trees. Direct effects of temperature on component species were conspicuous and sometimes predictable based on single-species physiology, but there were also strong indirect effects of temperature via alteration of species interactions that could not have been predicted based on autecological temperature responses. Climatic variation, including directional warming, will likely influence ecological systems through direct physiological effects as well as indirect effects through species interactions.  相似文献   

12.
Pathogens have the potential to shape plant community structure, and thus, it is important to understand the factors that determine pathogen diversity and infection in communities. The abundance, origin, and evolutionary relationships of plant hosts are all known to influence pathogen patterns and are typically studied separately. We present an observational study that examined the influence of all three factors and their interactions on the diversity of and infection of several broad taxonomic groups of foliar, floral, and stem pathogens across three sites in a temperate grassland in the central United States. Despite that pathogens are known to respond positively to increases in their host abundances in other systems, we found no relationship between host abundance and either pathogen diversity or infection. Native and exotic plants did not differ in their infection levels, but exotic plants hosted a more generalist pathogen community compared to native plants. There was no phylogenetic signal across plants in pathogen diversity or infection. The lack of evidence for a role of abundance, origin, and evolutionary relationships in shaping patterns of pathogens in our study might be explained by the high generalization and global distributions of our focal pathogen community, as well as the high diversity of our plant host community. In general, the community‐level patterns of aboveground pathogen infections have received less attention than belowground pathogens, and our results suggest that their patterns might not be explained by the same drivers.  相似文献   

13.
Diversity and classification of mycorrhizal associations   总被引:1,自引:0,他引:1  
Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.  相似文献   

14.
Vector‐borne diseases (VBDs) are defined as infectious diseases of humans and animals caused by pathogenic agents such as viruses, protists, bacteria, and helminths transmitted by the bite of blood‐feeding arthropod (BFA) vectors. VBDs represent a major public health threat in endemic areas, generally subtropical zones, and many are considered to be neglected diseases. Genome sequencing of some arthropod vectors as well as modern proteomic and genomic technologies are expanding our knowledge of arthropod–pathogen interactions. This review describes the proteomic approaches that have been used to investigate diverse biological questions about arthropod vectors, including the interplay between vectors and pathogens. Proteomic studies have identified proteins and biochemical pathways that may be involved in molecular crosstalk in BFA‐pathogen associations. Future work can build upon this promising start and functional analyses coupled with interactome bioassays will be carried out to investigate the role of candidate peptides and proteins in BFA‐human pathogen associations. Dissection of the host–pathogen interactome will be key to understanding the strategies and biochemical pathways used by BFAs to cope with pathogens.  相似文献   

15.
BackgroundThe composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale.ResultsHere, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes.ConclusionsOur results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0759-1) contains supplementary material, which is available to authorized users.  相似文献   

16.
Some pathogenic phloem‐limited bacteria are a major threat for worldwide agriculture due to the heavy economic losses caused to many high‐value crops. These disease agents – phytoplasmas, spiroplasmas, liberibacters, and Arsenophonus‐like bacteria – are transmitted from plant to plant by phloem‐feeding Hemiptera vectors. The associations established among pathogens and vectors result in a complex network of interactions involving also the whole microbial community harboured by the insect host. Interactions among bacteria may be beneficial, competitive, or detrimental for the involved microorganisms, and can dramatically affect the insect vector competence and consequently the spread of diseases. Interference is observed among pathogen strains competing to invade the same vector specimen, causing selective acquisition or transmission. Insect bacterial endosymbionts are another pivotal element of interactions between vectors and phytopathogens, because of their central role in insect life cycles. Some symbionts, either obligate or facultative, were shown to have antagonistic effects on the colonization by plant pathogens, by producing antimicrobial substances, by stimulating the production of antimicrobial substances by insects, or by competing for host infection. In other cases, the mutual exclusion between symbiont and pathogen suggests a possible detrimental influence on phytopathogens displayed by symbiotic bacteria; conversely, examples of microbes enhancing pathogen load are available as well. Whether and how bacterial exchanges occurring in vectors affect the relationship between insects, plants, and phytopathogens is still unresolved, leaving room for many open questions concerning the significance of particular traits of these multitrophic interactions. Such complex interplays may have a serious impact on pathogen spread and control, potentially driving new strategies for the containment of important diseases.  相似文献   

17.
During recent decades, there have been numerous attempts to identify the key determinants of parasite communities and several influential variables have been clarified at either infra-, component or compound community scales. However, in view of the possible complexity of interactions among determinants, the commonly-used exploratory and statistical modelling techniques have often failed to find meaningful ecological patterns from such data. Moreover, quantitative assessments of factors structuring species richness, abundance, community structure and species associations in parasite communities remain elusive. Recently, because they are ideally suited for the analysis of complex and highly interactive data, there has been increasing interest in the use of classification and regression tree analyses in several ecological fields. To date, such approaches have never been used by parasitologists for field data. This study aims to both introduce and illustrate the use of multivariate regression trees in order to investigate the determinants of parasite abundance in a multi-scale quantitative context. To do this, we used new field epidemiological data from 1489 coral reef fishes collected around two islands in French Polynesia. We evaluated the relative effect and interactions of several host traits and environmental factors on the abundance of metazoan parasite assemblage at several scales and assessed the impact of major factors on each parasite taxon. Our results suggest that the islands sampled, the host species and host size are equal predictors of parasite abundance at a global scale, whereas other factors proved to be significant predictors of a local pattern, depending on host family. We also discuss the potential use of regression trees for parasitologists as both an explorative and a promising predictive tool.  相似文献   

18.
Variation among aphid genotypes leads them to preferentially colonize different host-plant genotypes. In a natural community, different genotypes within a species are expected to coexist on a single host plant, and these aphids can interact, potentially, altering host-plant preferences. Using a model aphid (Sitobion avenae) and barley (Hordeum vulgare) system, we compared aphid preference and performance in one- or two-genotype colonies in pots with genetically diverse host plants (6 genotypes) or genetically uniform host plants (1 genotype per pot). Aphid host preference was shown to differ when a second aphid genotype was present, with one aphid genotype exhibiting a preference change due to the genotypic identity of the second aphid. The population growth rate of the aphids was not influenced by the competitor, and thus, we conclude that these effects are due to aphid distribution (preference) rather than effects through performance. Our work demonstrates that within a complex ecological community, an individual’s behavior can be influenced by interactions with other genotypes within the same species, as well as interactions with genotypes of other species.  相似文献   

19.

Background  

The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community.  相似文献   

20.
Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host–pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two‐pathogen susceptible‐infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species‐diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号