首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current study, we have established that the human (h) prostacyclin receptor (IP) is isoprenylated in whole cells. Through site directed mutagenesis and generation of the isoprenylation defective hIPSSLC, it was established that while isoprenylation of hIP does not influence ligand binding, it is obligatory for agonist activation of adenylyl cyclase and cAMP generation. Overexpression of GalphaS significantly augmented cAMP generation by the hIP but not by the hIPSSLC. Moreover, GalphaS co-immunoprecipitated with hIP following agonist activation but did not co-immunoprecipitate with hIPSSLC. Whereas hIP mediated concentration-dependent activation of phospholipase C (PLC); the extent of PLC activation by hIPSSLC was impaired compared to hIP. Co-expression of Galphaq significantly augmentated intracellular calcium mobilization by the hIP but not by hIPSSLC. Moreover, whereas Galphaq co-immunoprecipitated with hIP, it failed to co-immunoprecipitate with hIPSSLC. While both the hIP and hIPSSLC underwent agonist-induced internalization, the kinetics and extent of hIPSSLC internalization was impaired compared to hIP. Altering the CAAX motif of the hIP from a farnesyl (-CSLC) to a geranylgeranyl (-CSLL) isoprene acceptor, to generate hIPCSLL, did not affect ligand binding and yielded a receptor that exhibited identical signalling through both Gs- and Gq-coupled effectors to that of hIP. Thus, whereas isoprenylation of hIP does not influence ligand binding, it is functionally imperative in regulating post-receptor events including agonist-activation of adenylyl cyclase, for efficient activation of PLC and for receptor internalization. Though the nature of the isoprenoid attached to hIP does not act as a major determinant, the presence of an isoprenoid group, for example farnesyl or geranylgeranyl, is required for functional receptor-G protein interaction and coupling and for efficient agonist- induced receptor internalization.  相似文献   

2.
Plant protein isoprenylation has received considerable attention in the past decade. Since the initial discovery of isoprenylated plant proteins and their respective protein isoprenyltransferases, several research groups have endeavored to understand the physiological significance of this process in plants. Various experimental approaches, including inhibitor studies, systematic methods of protein identification, and mutant analyses in Arabidopsis thaliana, have enabled these groups to elucidate important roles for isoprenylated proteins in cell cycle control, signal transduction, cytoskeletal organization, and intracellular vesicle transport. This article reviews recent progress in understanding the functional implications of protein isoprenylation in plants.  相似文献   

3.
To investigate the palmitoylation of the human bradykinin B2 receptor, we have mutated individually or simultaneously into glycine two potential acylation sites (cysteines 324 and 329) located in the carboxyl terminus of the receptor and evaluated the effects of these mutations by transfection in COS-7, CHO-K1, and HEK 293T. The wild-type receptor and the single mutants, but not the double mutant, incorporated [3H]palmitate, indicating that the receptor carboxyl tail can be palmitoylated at both sites. The mutants did not differ from the wild-type receptor for the kinetics of [3H]bradykinin binding, the basal and bradykinin-stimulated coupling to phospholipases C and A2, and agonist-induced phosphorylation. The nonpalmitoylated receptor had a 30% reduced capacity to internalize [3H]bradykinin. This indicates that palmitoylation does not influence the basal activity of the receptor and its agonist-driven activation. However, the mutants triggered phospholipid metabolism and MAP kinase activation in response to B2 receptor antagonists. Pseudopeptide and nonpeptide compounds that behaved as antagonists on the wild-type receptor became agonists on the nonpalmitoylated receptor and produced phospholipases C and A2 responses of 25-50% as compared to that of bradykinin. These results suggest that palmitoylation is required for the stabilization of the receptor-ligand complex in an uncoupled conformation.  相似文献   

4.
Prostacyclin (PGI(2)), the major product of cyclooxygenase in macrovascular endothelium, mediates its biological effects through its cell surface G protein-coupled receptor, the IP. PKC-mediated phosphorylation of human (h) IP is a critical determinant of agonist-induced desensitization (Smyth, E. M., Hong Li, W., and FitzGerald, G. A. (1998) J. Biol. Chem. 273, 23258-23266). The regulatory events that follow desensitization are unclear. We have examined agonist-induced sequestration of hIP. Human IP, tagged at the N terminus with hemagglutinin (HA) and fused at the C terminus to the green fluorescent protein (GFP), was coupled to increased cAMP (EC(50) = 0.39 +/- 0.09 nm) and inositol phosphate (EC(50) = 86. 6 +/- 18.3 nm) generation when overexpressed in HEK 293 cells. Iloprost-induced sequestration of HAhIP-GFP, followed in real time by confocal microscopy, was partially colocalized to clathrin-coated vesicles. Iloprost induced a time- and concentration-dependent loss of cell surface HA, indicating receptor internalization, which was prevented by inhibitors of clathrin-mediated trafficking and partially reduced by cotransfection of cells with a dynamin dominant negative mutant. Sequestration (EC(50) = 27.6 +/- 5.7 nm) was evident at those concentrations of iloprost that induce PKC-dependent desensitization. Neither the PKC inhibitor GF109203X nor mutation of Ser-328, the site for PKC phosphorylation, altered receptor sequestration indicating that, unlike desensitization, internalization is PKC-independent. Deletion of the C terminus prevented iloprost-induced internalization, demonstrating the critical nature of this region for sequestration. Internalization was unaltered by cotransfection of cells with G protein-coupled receptor kinases (GRK)-2, -3, -5, -6, arrestin-2, or an arrestin-2 dominant negative mutant, indicating that GRKs and arrestins do not play a role in hIP trafficking. The hIP is sequestered in response to agonist activation via a PKC-independent pathway that is distinct from desensitization. Trafficking is dependent on determinants located in the C terminus, is GRK/arrestin-independent, and proceeds in part via a dynamin-dependent clathrin-coated vesicular endocytotic pathway although other dynamin-independent pathways may also be involved.  相似文献   

5.
We report that the cell surface glycoprotein CD4 expressed in HeLa cells can be metabolically labeled with [3H]palmitic acid. Analysis of the 3H-label after hydrolysis of the protein indicated that it was incorporated predominantly as palmitic acid. Comparison of the amount of [3H]palmitate incorporated into CD4 with that incorporated into a protein known to contain one molecule of esterified palmitate suggested that one to two molecules of palmitate were added to CD4. The fatty acid was readily cleaved from CD4 by treatment with weak base suggesting a thioester linkage. Mutations of each of 2 cysteine residues, Cys394 and Cys397, in CD4 at the junction of the transmembrane and cytoplasmic domains reduced labeling with [3H]palmitic acid, and mutation of both cysteines eliminated labeling. These results indicate that both cysteines are esterified to palmitate. Modification with palmitate was not required for expression of CD4 on the cell surface or for binding of p56lck to its cytoplasmic domain.  相似文献   

6.
Phosphorylation of the human prostacyclin (PGI(2)) receptor (hIP-R) by diacylglycerol-regulated protein kinase C (PKC) has been reported to be responsible for its rapid desensitization in HEK293 cells. In this study we demonstrate, that human fibroblasts reveal a much slower hIP-R desensitization kinetics, which was neither affected by stimulation nor inhibition of PKC by either phorbol 12-myristate-13-acetate or GF-109203X suggesting a different cellular mechanism. Although agonist-promoted sequestration of a C-terminally green fluorescent protein-tagged hIP-R was demonstrated, it did not account for the long-term desensitization. Concanavalin A did not abolish, but accelerated receptor desensitization kinetics. Resensitization of hIP-R involved receptor recycling and/or de novo synthesis of receptor protein, depending on the duration of prior desensitization. This is the first study investigating the mechanisms of hIP-R desensitization in intact human cells naturally expressing hIP-R. Our data suggest, that a hitherto unknown mechanism of hIP-R long-term desensitization, which is independent of receptor phosphorylation by conventional and novel type PKC isoforms or endocytosis, is a key event in regulating the cellular responsiveness to PGI(2).  相似文献   

7.
The luteinizing hormone/human chorionic gonadotropin receptor (LH/hCGR) undergoes palmitoylation at cysteine residues 621 and 622 located in the carboxyl terminal tail of the receptor. This study examined the biological function of palmitoylation with respect to its effect on receptor internalization. Coexpression of wild-type (WT) or C621/622G mutant receptors with arrestin-2 increased receptor internalization in 293T cells. Furthermore, measurements of rate enhancement upon overexpression of arrestin indicate that the palmitoylation deficient mutant receptor is more prone to utilizing the arrestin mediated internalization pathway than the WT receptor. Coexpression of G-protein-coupled receptor kinase 4 (GRK4) with wild type receptor resulted in an increase in internalization, while coexpression with the mutant receptor did not result in further enhancement of internalization. Additionally, 293T cells expressing mutant receptor were responsive to hCG with respect to production of inositol phosphates. Taken together, these results suggest that the palmitoylation state of the receptor governs internalization by regulating the accessibility of the receptor to the arrestin-mediated internalization pathway.  相似文献   

8.
Prostacyclin (PGI(2)) is an important mediator implicated in bone metabolism. Among the natural prostaglandins it is the most potent inhibitor of bone resorption and mediates bone modelling and remodelling induced by strain changes. The effects of prostacyclin depend on its interaction with a specific receptor (IP). Despite its well documented effects on bone the localization and distribution of the IP receptor in human bone remain unknown. The present study used specific antipeptide antibodies to IP receptor for immunolocalization of the IP receptor in normal, osteoporotic and Pagetic human adult bone and in human fetal bone. The IP receptor was detected in fetal and adult osteoclasts and osteoblasts. Fetal osteocytes also expressed IP receptor but not adult osteocytes. Interestingly, the expression of IP receptor in adult osteoblasts was gradually lost as these cells were trapped in the matrix and became osteocytes. The IP receptor showed a perinuclear distribution within the cells, but in multinuclear osteoclasts not all nuclei were positive. Our results showed differences in IP receptor expression in fetal and adult human bone and, in adult bone, with the differentiation of osteoblasts into osteocytes. They also showed that there is no difference on the expression of prostacyclin receptors in Pagetic, osteoporotic and normal human bone, and they confirm the presence of the IP receptor in human osteoblasts as had been demonstrated by our previous study with human osteoblasts in culture.  相似文献   

9.
Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.  相似文献   

10.
The human prostacyclin receptor (hIP) is a seven transmembrane-spanning G-protein-coupled receptor that plays an important role in vascular homeostasis. Recent genetic analyses (SNP database, NCBI) have revealed the first two polymorphisms within the coding sequence, V25M and R212H. Here we present structure-function characterizations of these polymorphisms at physiological pH (7.4) and at an acidic pH (6.8) that would be encountered during stress such as renal, respiratory, or heart failure. Through a series of competition binding and G-protein activation assays (measured by cAMP production), we determined that the V25M polymorph exhibited agonist binding and G-protein activation similar to wild-type receptor at normal pH (7.4). However, the R212H variant demonstrated a significant decrease in binding affinity at lower pH (R212H at pH 7.4, K(i) = 2.2 +/- 1.2 nm; pH 6.8 K(i) = 45.6 +/- 12.0 nm). The R212H polymorph also exhibited abnormal activation at both pH 7.4 and pH 6.8 (pH 7.4, R212H EC(50) = 2.8 +/- 0.5 nm versus wild-type hIP EC(50) = 0.5 +/- 0.1 nm; pH 6.8, R212H EC(50) = 3.2 +/- 1.6 nm versus wild-type hIP EC(50) = 0.5 +/- 0.2 nm). Polymorphisms of the human prostacyclin receptor potentially may be important predictors of disease progress during biological stressors such as acidosis in which urgent correction of bodily pH may be required to restore normal hemostasis and vasodilation. This study provides the mechanistic basis for further research into genetic risk factors and pharmacogenetics of cardiovascular disease associated with hIP.  相似文献   

11.
The human prostacyclin receptor is a seven-transmembrane alpha-helical G-protein coupled receptor, which plays important roles in both vascular smooth muscle relaxation as well as prevention of blood coagulation. The position of the native ligand-binding pocket for prostacyclin as well as other derivatives of the 20-carbon eicosanoid, arachidonic acid, has yet to be determined. Through the use of prostanoid receptor sequence alignments, site-directed mutagenesis, and the 2.8-A x-ray crystallographic structure of bovine rhodopsin, we have developed a three-dimensional model of the agonist-binding pocket within the seven-transmembrane (TM) domains of the human prostacyclin receptor. Upon mutation to alanine, 11 of 29 candidate residues within TM domains II, III, IV, V, and VII exhibited a marked decrease in agonist binding. Of this group, four amino acids, Arg-279 (TMVII), Phe-278 (TMVII), Tyr-75 (TMII), and Phe-95 (TMIII), were identified (via receptor amino acid sequence alignment, ligand structural comparison, and computer-assisted homology modeling) as having direct molecular interactions with ligand side-chain constituents. This binding pocket is distinct from that of the biogenic amine receptors and rhodopsin where the native ligands (also composed of a carbon ring and a carbon chain) are accommodated in an opposing direction. These findings should assist in the development of novel and highly specific ligands including selective antagonists for further molecular pharmacogenetic studies of the human prostacyclin receptor.  相似文献   

12.
We have identified both high-affinity (KD = 36 +/- 3 nM) and low-affinity (KD = 2.1 +/- 0.8 microM) prostacyclin (PGI2)-receptor sites on human erythroleukemia (HEL) cells using the radiolabelled prostacyclin analogue. [3H]iloprost. The addition of the phorbol ester, TPA, to the culture medium caused a 5-10-fold increase in the number of both the low- and the high-affinity sites, without any change in their affinity constants. Iloprost stimulated HEL cell membrane adenylate cyclase activity 5-fold. This stimulation was potentiated in the presence of GTP, indicating a conventional PGI2 receptor-G2-adenylate cyclase system. HEL cells represent a source of prostacyclin receptor mRNA which may be of value in expression cloning of this receptor.  相似文献   

13.
14.
Palmitoylation is a prevalent feature amongst G protein-coupled receptors. In this study we sought to establish whether the TPalpha and TPbeta isoforms of the human prostanoid thromboxane (TX) A2 receptor (TP) are palmitoylated and to assess the functional consequences thereof. Consistent with the presence of three cysteines within its unique carboxyl-terminal domain, metabolic labelling and site-directed mutagenesis confirmed that TPbeta is palmitoylated at Cys347 and, to a lesser extent, at Cys373,377 whereas TPalpha is not palmitoylated. Impairment of palmitoylation did not affect TPbeta expression or its ligand affinity. Conversely, agonist-induced [Ca2+]i mobilization by TPbetaC347S and the non-palmitoylated TPbetaC347,373,377S, but not by TPbetaC373S or TPbetaC373,377S, was significantly reduced relative to the wild type TPbeta suggesting that palmitoylation at Cys347 is specifically required for efficient Gq/phospholipase Cbeta effector coupling. Furthermore, palmitoylation at Cys373,377 is critical for TPbeta internalization with TPbetaC373S, TPbetaC373,377S and TPbetaC347,373,377S failing to undergo either agonist-induced or temperature-dependent tonic internalization. On the other hand, whilst TPbetaC347S underwent reduced agonist-induced internalization, it underwent tonic internalization to a similar extent as TPbeta. The deficiency in agonist-induced internalization by TPbetaC347S, but not by TPbetaC373,377 nor TPbeta(C347,373,377S), was overcome by over-expression of either beta-arrestin1 or beta-arrestin2. Taken together, data herein suggest that whilst palmitoylation of TPbeta at Cys373,377 is critical for both agonist- and tonic-induced internalization, palmitoylation at Cys347 has a role in determining which pathway is followed, be it by the beta-arrestin-dependent agonist-induced pathway or by the beta-arrestin-independent tonic internalization pathway.  相似文献   

15.
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.  相似文献   

16.
Mineralocorticoid receptors (MRs) in neurons of the anterior hypothalamus and the periventricular brain regions mediate aldosterone-selective actions on sodium hemeostasis, salt appetite and cardiovascular regulation. Corticosterone is not effective in these neurons, possibly because it is enzymatically inactivated. However, MRs in limbic brain regions, notably in the hippocampal neurons, do already respond to very low concentrations of both corticosterone and aldosterone. The MR-mediated effects stabilize neuronal transmission and appear critical for neuronal integrity of a sub-region of the hippocampus: the dentate gyrus. Higher concentrations of corticosterone induced by stress and the circadian rise progressively activate the lower affinity glucocorticoid receptors (GRs), which in coordination with MR-mediated actions then facilitate adaptive processes required for recovery of homeostasis. It is postulated that this balanced MR- and GR-mediated action of corticosterone is of critical importance for regulation of the stress response and behavioural adaptation.  相似文献   

17.
Functional domains of the human glucocorticoid receptor   总被引:96,自引:0,他引:96  
  相似文献   

18.
Functional domains of the human estrogen receptor   总被引:116,自引:0,他引:116  
V Kumar  S Green  G Stack  M Berry  J R Jin  P Chambon 《Cell》1987,51(6):941-951
  相似文献   

19.
20.
We report that a cysteine residue in the human beta 2-adrenergic receptor (beta 2AR) is covalently modified by thioesterification with palmitic acid. By site-directed mutagenesis of the receptor, we have identified Cys341 in the carboxyl tail of the protein as the most likely site of palmitoylation. Mutation of Cys341 to glycine results in a nonpalmitoylated form of the receptor that exhibits a drastically reduced ability to mediate isoproterenol stimulation of adenylyl cyclase. The functional impairment of this mutated beta 2AR is also reflected in a markedly reduced ability to form a guanyl nucleotide-sensitive high affinity state for agonists, characteristic of wild-type receptor. These results indicate that post-translational modification by palmitate of beta 2AR may play a crucial role in the normal coupling of the receptor to the adenylyl cyclase signal transduction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号