首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular markers have been widely used to map quantitative trait loci (QTL). The QTL mapping partly relies on accurate linkage maps. The non-Mendelian segregation of markers, which affects not only the estimation of genetic distance between two markers but also the order of markers on a same linkage group, is usually observed in QTL analysis. However, these distorted markers are often ignored in the real data analysis of QTL mapping so that some important information may be lost. In this paper, we developed a multipoint approach via Hidden Markov chain model to reconstruct the linkage maps given a specified gene order while simultaneously making use of distorted, dominant and missing markers in an F2 population. The new method was compared with the methods in the MapManager and Mapmaker programs, respectively, and verified by a series of Monte Carlo simulation experiments along with a working example. Results showed that the adjusted linkage maps can be used for further QTL or segregation distortion locus (SDL) analysis unless there are strong evidences to prove that all markers show normal Mendelian segregation.  相似文献   

2.
In F2 populations, gametic and zygotic selection may affect the analysis of linkage in different ways. Therefore, specific likelihood equations have to be developed for each case, including dominant and codominant markers. The asymptotic bias of the classical estimates are derived for each case, in order to compare them with the standard errors of the suggested estimates. We discuss the utility and the efficiency of a previous model developed for dominant markers. We show that dominant markers provide very poor information in the case of segregation distortion and, therefore, should be used with circumspection. On the other hand, the estimation of recombination fractions between codominant markers is less affected by selection than is that for dominant markers. We also discuss the analysis of linkage between dominant and codominant markers.  相似文献   

3.
Chromosomal regions associated with segregation distortion in maize   总被引:30,自引:0,他引:30  
Segregation distortion skews the genotypic frequencies from their Mendelian expectations. Our objectives in this study were to assess the frequency of occurrence of segregation distortion in maize, identify chromosomal regions consistently associated with segregation distortion, and examine the effects of gametophytic factors on linkage mapping. We constructed a simple sequence repeat (SSR) linkage map for a LH200/LH216 F2Syn3 (i.e., random-mated three times) population, and compared the segregation distortion in this map with the segregation distortion in three published linkage maps. Among 1,820 codominant markers across the four mapping populations, 301 (17%) showed segregation distortion (P < 0.05). The frequency of markers showing segregation distortion ranged from 19% in the Tx303/CO159 mapping population to 36% in the B73/Mo17 mapping population. A positive relationship was found between the number of meioses and the frequency of segregation distortion detected in a population. On a given chromosome, nearly all of the markers showing segregation distortion favored the allele from the same parent. A total of 18 chromosomal regions on the ten maize chromosomes were associated with segregation distortion. The consistent location of these chromosomal regions in four populations suggested the presence of segregation distortion regions (SDRs). Three known gametophytic factors are possible genetic causes of these SDRs. As shown in previous research, segregation distortion does not affect the estimate of map distance when only one gametophytic factor is present in an SDR.  相似文献   

4.
Hall MC  Willis JH 《Genetics》2005,170(1):375-386
We constructed a genetic linkage map between two divergent populations of Mimulus guttatus. We genotyped an F(2) mapping population (N = 539) at 154 AFLP, microsatellite, and gene-based markers. A framework map was constructed consisting of 112 marker loci on 14 linkage groups with a total map length of 1518 cM Kosambi. Nearly half of all markers (48%) exhibited significant transmission ratio distortion (alpha = 0.05). By using a Bayesian multipoint mapping method and visual inspection of significantly distorted markers, we detected 12 transmission ratio distorting loci (TRDL) throughout the genome. The high degree of segregation distortion detected in this intraspecific map indicates substantial genomic divergence that perhaps suggests genomic incompatibilities between these two populations. We compare the pattern of transmission ratio distortion in this map to an interspecific map constructed between M. guttatus and M. nasutus. A similar level of segregation distortion is detected in both maps. Collinear regions between maps are compared to determine if there are shared genetic patterns of non-Mendelian segregation distortion within and among Mimulus species.  相似文献   

5.
Z W Luo  S Suhai 《Genetics》1999,151(1):359-371
Positional cloning of gene(s) underlying a complex trait requires a high-resolution linkage map between the trait locus and genetic marker loci. Recent research has shown that this may be achieved through appropriately modeling and screening linkage disequilibrium between the candidate marker locus and the major trait locus. A quantitative genetics model was developed in the present study to estimate the coefficient of linkage disequilibrium between a polymorphic genetic marker locus and a locus underlying a quantitative trait as well as the relevant genetic parameters using the sample from randomly mating populations. Asymptotic covariances of the maximum-likelihood estimates of the parameters were formulated. Convergence of the EM-based statistical algorithm for calculating the maximum-likelihood estimates was confirmed and its utility to analyze practical data was exploited by use of extensive Monte-Carlo simulations. Appropriateness of calculating the asymptotic covariance matrix in the present model was investigated for three different approaches. Numerical analyses based on simulation data indicated that accurate estimation of the genetic parameters may be achieved if a sample size of 500 is used and if segregation at the trait locus explains not less than a quarter of phenotypic variation of the trait, but the study reveals difficulties in predicting the asymptotic variances of these maximum-likelihood estimates. A comparison was made between the statistical powers of the maximum-likelihood analysis and the previously proposed regression analysis for detecting the disequilibrium.  相似文献   

6.
Previously, an interspecific cross between Fusarium circinatum and Fusarium subglutinans was used to generate a genetic linkage map. A ca. 55 % of genotyped markers displayed transmission ratio distortion (TRD) that demonstrated a genome-wide distribution. The working hypothesis for this study was that TRD would be non-randomly distributed throughout the genetic linkage map. This would indicate the presence of distorting loci. Using a genome-wide threshold of α = 0.01, 79 markers displaying TRD were distributed on all 12 linkage groups (LGs). Eleven putative transmission ratio distortion loci (TRDLs), spanning eight LGs, were identified in regions containing three or more adjacent markers displaying distortion. No epistatic interactions were observed between these TRDLs. Thus, it is uncertain whether the genome-wide TRD was due to linkage between markers and genomic regions causing distortion. The parental origins of markers followed a non-random distribution throughout the linkage map, with LGs containing stretches of markers originating from only one parent. Thus, due to the nature of the interspecific cross, the current hypothesis to explain these observations is that the observed genome-wide segregation was caused by the high level of genomic divergence between the parental isolates. Therefore, homologous chromosomes do not align properly during meiosis, resulting in aberrant transmission of markers. This also explains previous observations of the preferential transmission of F. subglutinans alleles to the F1 progeny.  相似文献   

7.
利用向日葵重组自交系构建遗传图谱   总被引:2,自引:0,他引:2  
张永虎  于海峰  侯建华  李素萍  吕品  于志贤 《遗传》2014,36(10):1036-1042
以向日葵自选系K55为母本、K58为父本杂交组合,通过单粒传得到的187个F5:6代重组自交系群体为作图材料,联合应用SSR和AFLP标记构建遗传连锁图谱。经过78对SSR引物和48对AFLP引物组合选择性扩增,分别得到341和1119条带,共1460条,分别获得多态性条带184条和393条,共577条多态性条带,占所有条带的39.52%。SSR和AFLP标记各有84个和108个多态性标记偏离孟德尔分离比例(P=0.05),共192个偏分离标记。采用JoinMap4.0软件进行连锁分析,构建了1张总长度为2759.4 cM、包含17个连锁群、连锁495个多态性标记的遗传图谱,其中偏分离标记170个,标记间的平均图距为5.57 cM。每个连锁群上分布有5~72个标记,长68.88~250.17 cM。本图谱为向日葵永久性图谱,为向日葵重要性状QTL定位和基因克隆奠定基础。  相似文献   

8.
We have used a one-way pseudo-testcross mapping strategy in combination with different types of PCR-based markers (RAPD, AFLP, SAMPL) to construct a first linkage map for variegated chicory (Cichorium intybus L. var. silvestre Biskoff, n=9), a self-incompatible vegetable species. The success of such a strategy depends on the presence of sufficiently high levels of heterozygosity in the individual plant which is being mapped and on the informativeness of the marker system that is used. A total of 371 markers, comprising 16 RAPDs, 72 SAMPLs and 283 AFLPs, were scored in 46 F1 individuals obtained from an interspecific cross between a C. intybus outbred individual and a C. endivia inbred line. Grouping of the markers at a LOD score of 4.0 resulted in 13 linkage groups covering 1330 cM. A framework map covering 1201.4 cM was assembled by using all markers that could be ordered with a LOD greater than 2.0. We estimate the total genome size of chicory to be ca. 1405 cM, thus considerably smaller than that estimated for lettuce (1950 cM). The usefulness of the different marker systems that were applied is analysed in terms of level of heterozygosity and marker index, i.e. number of different genetic loci that may be simultaneously analysed per experiment. Out of the 371 markers, 50 of them showed segregation distortion which is discussed in terms of the hybrid origin of the variegated chicory.  相似文献   

9.
Wu YP  Ko PY  Lee WC  Wei FJ  Kuo SC  Ho SW  Hour AL  Hsing YI  Lin YR 《Hereditas》2010,147(5):225-236
To facilitate genetic research, we constructed two linkage maps by employing two F? populations derived from rice inter-subspecific crosses, japonica Tainung 67 (TNG67)/indica Taichung Sen 10 (TCS10) and japonica TNG67/indica Taichung Sen 17 (TCS17). We established linkage map lengths of 1481.6 cM and 1267.4 cM with average intervals of 13.8 cM and 14.4 cM by using 107 and 88 PCR markers for coverage of 88% of the rice genome in TNG67/TCS10 and TNG67/TCS17, respectively. The discrepancy in genetic maps in the two populations could be due to different cross combinations, crossing-over events, progeny numbers and/or markers. The most plausible explanation was segregation distortion; 18 markers (16.8%) distributed at nine regions of seven chromosomes and 10 markers (11.4%) at four regions of four chromosomes displayed severe segregation distortion (p < 0.01)in TNG67/TCS10 and TNG67/TCS17, respectively. All segregation-distorted markers in these two populations corresponded to reported reproductive barriers, either gametophytic or zygotic genes but not to hybrid breakdown genes. The observed recombination frequency, which was higher or lower than the intrinsic frequency, revealed the association of segregation distortion skewed to the same or different genotypes at the consecutive markers. The segregation distortion, possibly caused by reproductive barriers, affects the evaluation recombination frequencies and consequently the linkage analysis of QTLs and positional cloning.  相似文献   

10.
To map the QTLsof Fusarium moniliforme ear rot resistance inZea mays L., a total of 230 F2 individuals, derived from a single cross between inbred maize lines R15 (resistant) and Ye478 (susceptible), were genotyped for genetic map construction using simple sequence repeat (SSR) markers and amplified fragment length polymorphism (AFLP) markers. We used 778 pairs of SSR primers and 63 combinations of AFLP primers to detect the polymorphisms between parents, R15 and Ye478. From the polymorphic 30 AFLP primer combinations and 159 SSR primers, we scored 260 loci in the F2 population, among which 8 SSR and 13 AFLP loci could not be assigned to any of the linkage groups. An integrated molecular genetic linkage map was constructed by the remaining 151 SSR and 88 AFLP markers, which distributed throughout the 10 linkage groups of maize and spanned the genome of about 3463.5 cM with an average of 14.5 cM between two markers. On 4 chromosomes, we detected 5 putative segregation distortion regions (SDRs), including 2 new ones (SDR2 and SDR7). The other 3 SDRs were located near the regions where gametophyte genes were mapped, indicating that segregation distortion could be partially caused by gametophytic factors.  相似文献   

11.
An improved genetic map of diploid (2n=2x=16) alfalfa has been developed by analyzing the inheritance of more than 800 genetic markers on the F2 population of 137 plant individuals. The F2 segregating population derived from a self-pollinated F1 hybrid individual of the cross Medicago sativa ssp. quasifalcata ×Medicago sativa ssp. coerulea. This mapping population was the same one which had been used for the construction of our previous alfalfa genetic map. The genetic analyses were performed by using maximum-likelihood equations and related computer programs. The improved genetic map of alfalfa in its present form contains 868 markers (four morphological, 12 isozyme, 26 seed protein, 216 RFLP, 608 RAPD and two specific PCR markers) in eight linkage groups. Of the markers 80 are known genes, including 2 previously cytologically localized genes, the rDNA and the β-tubulin loci. The genetic map covers 754 centimorgans (cM) with an average marker density of 0.8/cM. The correlation between the physical and genetic distances is about 1000–1300 kilobase pairs per centiMorgan. In this map, the linkage relationships of some markers on linkage groups 6, 7, and 8 are different from the previously published one. The cause of this discrepancy was that the genetic linkage of markers displaying distorted segregation (characterized by an overwhelming number of heterozygous individuals) had artificially linked genetic regions that turned out to be unlinked. To overcome the disadvantageous influence of the excess number of heterozygous genotypes on the recombination fractions, we used recently described maximum-likelihood formulas and colormapping, which allowed us to exclude the misleading linkages and to estimate the genetic distances more precisely. Received: 19 October 1998 / Accepted: 15 April 1999  相似文献   

12.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

13.
根据连锁遗传的原理,列出了三点自交法和两点自交最大似然(ML)法估算显性标记遗传距离的具体步骤和算法,将水稻F2群体含香味基因Aro及其连锁的RFLP数据转变为显性标记数据后,用上述两种方法构建的连锁图谱与用MAPMAKER软件计算共显性数据得到的图谱排序相同、标记间距离相近.但是标记数据存在较大程度偏分离时,由三点自交法构建的图谱中标记间图距有增大趋势.作者为提高作图精确性,简化计算过程,讨论了三点自交法对估算重组值的影响及其在分子标记作图中的应用价值,并建议将共显性标记转变为显性标记时进行两次自交ML法估算。  相似文献   

14.
Classical linkage programs analyze the segregation of two markers in informative families. When several markers are available for one human chromosome, pairwise analysis can exclude linkage between each marker and an inherited disease. The identification of restriction fragment length polymorphisms has made many new informative markers, assigned to chromosomes, available. We have adapted the multipoint linkage program MLINK developed by Lathrop et al. in order to exclude linkage between cystic fibrosis and several markers known to be on human chromosome 4. The exclusion obtained is greater than that for a pairwise analysis.  相似文献   

15.
Monoploids can be obtained from several diploid plant species by anther culture. Mapping of molecular markers using monoploids is greatly facilitated by the simple 1:1 segregation ratio expected from all heterozygous loci in the genome. Distorted segregation of molecular markers, however, appears to be a common phenomenon in many crop species and hinders the use of monoploids for mapping purposes. This report examines the segregation pattern of two marker genes linked together with one locus or separately with two independent loci which are responsible for the observed distortion. Each of the loci exhibiting distorted segregation has one of the two alleles which inhibits regeneration of the gametic cells in vitro and disrupts the expected segregation ratio of the linked markers. All possible situations in which linkage occurs between markers and distortion-causing genes are considered. Theoretical results outlining the segregation pattern among these linkage types indicate that the distinguishable distorted ratios can be used for mapping purposes. A protocol is given for the mapping of distorted gene markers based on existing gene mapping software. An example is presented of the mapping of distorted RAPD markers of monoploids obtained from a diploid potato genotype. Received: 18 October 1999 / Accepted: 24 November 1999<@head-com-p1a.lf>Communicated by G. Wenzel  相似文献   

16.
Sugarcane (Saccharum spp.) is a clonally propagated outcrossing polyploid crop of great importance in tropical agriculture. Up to now, all sugarcane genetic maps had been developed using either full-sib progenies derived from interspecific crosses or from selfing, both approaches not directly adopted in conventional breeding. We have developed a single integrated genetic map using a population derived from a cross between two pre-commercial cultivars (‘SP80-180’ × ‘SP80-4966’) using a novel approach based on the simultaneous maximum-likelihood estimation of linkage and linkage phases method specially designed for outcrossing species. From a total of 1,118 single-dose markers (RFLP, SSR and AFLP) identified, 39% derived from a testcross configuration between the parents segregating in a 1:1 fashion, while 61% segregated 3:1, representing heterozygous markers in both parents with the same genotypes. The markers segregating 3:1 were used to establish linkage between the testcross markers. The final map comprised of 357 linked markers, including 57 RFLPs, 64 SSRs and 236 AFLPs that were assigned to 131 co-segregation groups, considering a LOD score of 5, and a recombination fraction of 37.5 cM with map distances estimated by Kosambi function. The co-segregation groups represented a total map length of 2,602.4 cM, with a marker density of 7.3 cM. When the same data were analyzed using JoinMap software, only 217 linked markers were assigned to 98 co-segregation groups, spanning 1,340 cM, with a marker density of 6.2 cM. The maximum-likelihood approach reduced the number of unlinked markers to 761 (68.0%), compared to 901 (80.5%) using JoinMap. All the co-segregation groups obtained using JoinMap were present in the map constructed based on the maximum-likelihood method. Differences on the marker order within the co-segregation groups were observed between the two maps. Based on RFLP and SSR markers, 42 of the 131 co-segregation groups were assembled into 12 putative homology groups. Overall, the simultaneous maximum-likelihood estimation of linkage and linkage phases was more efficient than the method used by JoinMap to generate an integrated genetic map of sugarcane. E.A. Kido, A.N. Meza and H.M.B. Souza contributed equally to this work.  相似文献   

17.
Selective genotyping of extreme progeny is a powerful method to increase the information content per individual when looking for quantitative trait loci (QTLs) using molecular markers for which a map is known. However, if marker information from the selected individuals is used to construct the map of the markers, this can lead to distorted segregation of the markers that in turn can lead to the estimation of a spurious linkage between independently inherited markers. The mistaken estimation of linkage between independently inherited markers will occur when there are two (or more) independently inherited QTLs linked to two (or more) markers and the same individuals are used to estimate the map of the markers and to do the QTL estimation. The incorrect linkage occurs because in selecting individuals from the tails of the phenotypic distribution we will also be selecting certain combinations of the markers instead of obtaining a random sample of the true distribution of the marker genotypes. Analytical results are outlined and the analyses of a simulated data set illustrate the problems that could arise when data from individuals chosen by selective genotyping are incorrectly employed to construct a marker map. A strategy is proposed to remedy this problem.  相似文献   

18.
Missing marker and segregation distortion are commonly encountered in actual quantitative trait locus (QTL) mapping populations. Our objective in this study was to investigate the impact of the two factors on QTL mapping through computer simulations. Results indicate that detection power decreases with increasing levels of missing markers, and the false discovery rate increases. Missing markers have greater effects on smaller effect QTL and smaller size populations. The effect of missing markers can be quantified by a population with a reduced size similar to the marker missing rate. As for segregation distortion, if the distorted marker is not closely linked with any QTL, it will not have significant impact on QTL mapping; otherwise, the impact of the distortion will depend on the degree of dominance of QTL, frequencies of the three marker types, the linkage distance between the distorted marker and QTL, and the mapping population size. Sometimes, the distortion can result in a higher genetic variance than that of non-distortion, and therefore benefits the detection of linked QTL. A formula of the ratio of genetic variance explained by QTL under distortion and non-distortion was given in this study, so as to easily determine whether the segregation distortion marker (SDM) increases or decreases the QTL detection power. The effect of SDM decreases rapidly as its linkage relationship with QTL becomes looser. In general, distorted markers will not have a great effect on the position and effect estimations of QTL, and their effects can be ignored in large-size mapping populations.  相似文献   

19.
We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

20.
We present novel microsatellite markers of the Japanese abalone (Haliotis discus hannai) for general mapping studies in this species. A total of 75 microsatellite markers were developed, and the allele-transmission patterns of these markers were studied in three families generated by pair crosses. For allele scoring, we employed the 5′-tailed primer polymerase chain reaction (PCR) technique, which substantially reduces the cost for fluorescent labeling of primers. Of the 225 possible marker-family combinations (75 markers × 3 families), 18 cases of informative null-allele segregation were inferred. When such null-allele segregations were allowed, more than 70% of the 75 markers in the families turned out to be markers with an expected segregation ratio of 1:1:1:1, allowing maximal exploitation of the codominant nature of microsatellite markers. There were 16 instances of segregation distortion at the 5% significance level. The test for independence of segregation assigned the 75 markers into 17 linkage groups, which is in close agreement with the haploid chromosome number of H. discus hannai (n = 18). Six markers could not be placed into any linkage group. We suggest that these markers could help construct a H. discus hannai linkage map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号