首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ECL cells in the oxyntic mucosa of stomach control gastric acid secretion by mobilizing histamine in response to gastrin. They respond to gastrin also with hypertrophy and hyperplasia. ECL cells exhibit functional impairment upon long-term gastrin stimulation. The impairment is manifested in a gradual decline of the activity of the histamine-forming enzyme per individual ECL cell and in a failure of gastrin to mobilize histamine. The mechanism behind this impairment is unknown. In the present study, rats were treated with the proton pump inhibitor pantoprazole for 45 days to induce sustained hypergastrinemia. The ECL cells were isolated from normogastrinemic and hypergastrinemic rats and size-separated from other mucosal cells by the elutriation technique. The total ECL cell number was twofold higher in hypergastrinemic rats than in normogastrinemic rats, and most of the cells appeared in elutriation fractions where large cells predominate. The ECL cells of the different fractions were analyzed by quantitative electron microscopy. Normal-sized ECL cells from hypergastrinemic rats displayed a reduced number of secretory vesicles (probably because of degranulation) compared with normal-sized ECL cells from normogastrinemic rats. Hypertrophic ECL cells from hypergastrinemic rats had an unchanged number of secretory vesicles, supporting the view that such cells fail to respond to gastrin with degranulation. Although both normal-sized and hypertrophic ECL cells from hypergastrinemic rats contained vacuoles, those in the hypertrophic ECL cells were larger and more numerous. In addition, hypertrophic ECL cells were found to contain numerous, prominent lipofuscin bodies which are the presumed end product of crinophagia. Conceivably therefore, large vacuoles and lipofuscin bodies cause functional impairment of the hypertrophic ECL cells.  相似文献   

2.
Using immunohistochemistry at the conventional light, confocal and electron microscopic levels, we have demonstrated that rat stomach ECL cells store histamine and pancreastatin in granules and secretory vesicles, while histidine decarboxylase occurs in the cytosol. Furthermore the ECL cells display immunoreactivity for vesicular monoamine transporter type 2 (VMAT-2), synaptophysin, synaptotagmin III, vesicle-associated membrane protein-2, cysteine string protein, synaptosomal-associated protein of 25 kDa, syntaxin and Munc-18. Using electron microscopy in combination with stereological methods, we have evidence to suggest the existence of both an exocytotic and a crinophagic pathway in the ECL cells. The process of exocytosis in the ECL cells seems to involve a class of proteins that promote or participate in the fusion between the granule/vesicle membrane and the plasma membrane. The granules take up histamine by VMAT-2 from the cytosol during transport from the Golgi zone to the more peripheral parts of the cells. As a result, they turn into secretory vesicles. As a consequence of stimulation (e.g., by gastrin), the secretory vesicles fuse with the cell membrane to release their contents by exocytosis. The crinophagic pathway was studied in hypergastrinemic rats. In the ECL cells of such animals, the secretory vesicles were found to fuse not only with the cell membrane but also with each other to form vacuoles. Subsequent lysosomal degradation of the vacuoles and their contents resulted in the development of lipofuscin bodies.  相似文献   

3.
The enterochromaffin-like (ECL) cells of the gastric mucosa in animals play an important role in gastric acid secretion. They contain few granules and numerous secretory vesicles and microvesicles. They operate under the control of circulating gastrin. In the present study, we conducted an immunoelectron microscopic study for histamine (HA) in the ECL cells of rats given the proton pump inhibitor lansoprazole (LP), which is known to induce hypergastrinemia. The pre-embedding indirect immunoperoxidase procedure utilized a mouse monoclonal antibody AHA-2 against glutaraldehyde-conjugated HA. Rats received LP (50 g/kg per day, subcutaneously) over a period of a month, and developed hypertrophy of the ECL cells in the stomach. It was clearly demonstrated that HA was located to a much higher degree in the cytoplasm of ECL cells of LP-treated rats than in normal rats. HA immunoreactivity was observed in the cores of the granules and secretory vesicles of the ECL cells in all the rats, but in the LP-treated rats it was observed in the cores of the newly developed vacuoles as well. These results may suggest that HA may be actively generated in the cytoplasm of the hypertrophic ECL cells of LP-treated rats. Also suggested in the present study is that HA is instrumental in the transformation of granules into secretory vesicles and in their consequent enlargement, and that vacuoles are formed by the fusion of large secretory vesicles. Furthermore, the finding that relatively little HA immunoreactivity existed in the vacuoles may suggest that the vacuoles actively degrade superfluous secretory products (for example, HA) through enhanced autophagocytosis and/or oxidative stress. Another possibility may be that the membrane-bounded structure regarded as the vacuoles in this study might actually be an invagination structure produced as a result of successive series of exocytosis through which the secretory vesicles actively and rapidly release HA.  相似文献   

4.
Histamine in the rat stomach resides in enterochromaffin-like (ECL) cells and mast cells. The ECL cells are peptide-hormone-producing endocrine cells known to release histamine and chromogranin-A-derived peptides (such as pancreastatin) in response to gastrin. Ischemia (induced by clamping of the celiac artery or by gastric submucosal microinfusion of the vasoconstrictor endothelin) mobilizes large amounts of ECL-cell histamine in a burst-like manner. This report examines the ECL-cell response to ischemia and compares it with that induced by gastrin in rats. Arterial clamping (30 min) and gastric submucosal microinfusion (3 h) of endothelin, vasopressin, or adrenaline caused ischemia, manifested as a raised lactate/pyruvate ratio and mucosal damage. Whereas microinfusion of gastrin released both histamine and pancreastatin, ischemia mobilized histamine only. The mucosal concentrations of histamine and pancreastatin, the number and immunostaining intensity of the ECL cells, and the ultrastructure of the ECL cells were unchanged following ischemia. The long-term effects of ischemia and reperfusion (60-90 min) on gastric mucosa were examined in rats treated with the proton pump inhibitor omeprazole for 4 days. The activity of the ECL cells was suppressed (reflected in low histamine-forming capacity) but returned to normal within 1 week, illustrating the ability of the ECL cells to recover. We suggest that ischemia mobilizes cytosolic ECL-cell histamine without affecting the storage of histamine (and pancreastatin) in the secretory organelles and without causing lasting ECL-cell impairment.  相似文献   

5.
ECL cells are numerous in the rat stomach. They produce and store histamine and chromogranin-A (CGA)-derived peptides such as pancreastatin and respond to gastrin with secretion of these products. Numerous electron-lucent vesicles of varying size and a few small, dense-cored granules are found in the cytoplasm. Using confocal and electron microscopy, we examined these organelles and their metamorphosis as they underwent intracellular transport from the Golgi area to the cell periphery. ECL-cell histamine was found to occur in both cytosol and secretory vesicles. Histidine decarboxylase, the histamine-forming enzyme, was in the cytosol, while pancreastatin (and possibly other peptide products) was confined to the dense cores of granules and secretory vesicles. Dense-cored granules and small, clear microvesicles were more numerous in the Golgi area than in the docking zone, i.e. close to the plasma membrane. Secretory vesicles were numerous in both Golgi area and docking zone, where they were sometimes seen to be attached to the plasma membrane. Upon acute gastrin stimulation, histamine was mobilized and the compartment size (volume density) of secretory vesicles in the docking zone was decreased, while the compartment size of microvesicles was increased. Based on these findings, we propose the following life cycle of secretory organelles in ECL cells: small, electron-lucent microvesicles (pro-granules) bud off the trans Golgi network, carrying proteins and secretory peptide precursors (such as CGA and an anticipated prohormone). They are transformed into dense-cored granules (approximate profile diameter 100 nm) while still in the trans Golgi area. Pro-granules and granules accumulate histamine, which leads to their metamorphosis into dense-cored secretory vesicles. In the Golgi area the secretory vesicles have an approximate profile diameter of 150 nm. By the time they reach their destination in the docking zone, their profile diameter is between 200 and 500 nm. Exocytosis is coupled with endocytosis (membrane retrieval), and microvesicles in the docking zone are likely to represent membrane retrieval vesicles (endocytotic vesicles).  相似文献   

6.
Rat stomach ECL cells are rich in histamine and chromogranin A-derived peptides, such as pancreastatin. Gastrin causes the parietal cells to secrete acid by flooding them with histamine from the ECL cells. In the past, gastric histamine release has been studied using anaesthetized, surgically manipulated animals or isolated gastric mucosa, glands or ECL cells. We monitored gastric histamine mobilization in intact conscious rats by subjecting them to gastric submucosal microdialysis. A microdialysis probe was implanted into the submucosa of the acid-producing part of the stomach (day 1). The rats had access to food and water or were deprived of food (48 h), starting on day 2 after implantation of the probe. On day 4, the rats received food or gastrin (intravenous infusion), and sampling of microdialysate commenced. Samples (flow rate 1.2 microl min(-1)) were collected every 20 or 60 min, and the histamine and pancreastatin concentrations were determined. The serum gastrin concentration was determined in tail vein blood. Exogenous gastrin (4-h infusion) raised microdialysate histamine and pancreastatin dose-dependently. This effect was prevented by gastrin receptor blockade (YM022). Depletion of ECL-cell histamine by alpha-fluoromethylhistidine, an irreversible inhibitor of the histamine-forming enzyme, suppressed the gastrin-evoked release of histamine but not that of pancreastatin. Fasting lowered serum gastrin and microdialysate histamine by 50%, while refeeding raised serum gastrin and microdialysate histamine and pancreastatin 3-fold. We conclude that histamine mobilized by gastrin and food intake derives from ECL cells because: 1) Histamine and pancreastatin were released concomitantly, 2) histamine mobilization following gastrin or food intake was prevented by gastrin receptor blockade, and 3) mobilization of histamine (but not pancreastatin) was abolished by alpha-fluoromethylhistidine. Hence, gastric submucosal microdialysis allows us to monitor the mobilization of ECL-cell histamine in intact conscious rats under various experimental conditions not previously accessible to study. While gastrin receptor blockade lowered post-prandial release of ECL-cell histamine by about 80%, unilateral vagotomy reduced post-prandial mobilization of ECL-cell histamine by about 50%. Hence, both gastrin and vagal excitation contribute to the post-prandial release of ECL-cell histamine.  相似文献   

7.
The chromogranins are soluble, acidic, proteins which are frequently co-stored in neuroendocrine cells with biogenic amines. In the gastric mucosa chromogranin A is localized to enterochromaffin-like cells which are the main source of histamine, and which are known to be regulated by circulating gastrin. We have used radioimmunoassays selective for the extreme C-terminal regions of chromogranin A and B to examine changes in gastric extracts following modulation of the gastric luminal contents. There were decreased concentrations of the two chromogranins in tissue extracts of rats after food withdrawal (which lowered plasma gastrin concentrations); inhibition of acid secretion with the H+/K(+)-ATPase inhibitor, omeprazole (which increased plasma gastrin concentrations) raised chromogranin A and B concentrations both in fasted rats, and in rats fed ad libitum. There was no evidence for altered patterns of posttranslational cleavage of chromogranin A or B with these treatments. The data indicate that chromogranin A and B concentrations in gastric ECL cells are regulated in parallel with histamine production, and are consistent with the idea that the chromogranins play a role in the formation and stabilization of the secretory granule involved in amine storage.  相似文献   

8.
The enterochromaffin-like (ECL) cells represent the predominant endocrine cell population in the acid-producing part of the stomach of both experimental animals and man. These cells actively produce and store histamine in addition to an anticipated but as yet unidentified peptide hormone and are under the control of gastrin. An acute gastrin stimulus causes exocytosis of the cytoplasmic granules/vesicles (and release of histamine and activation of the histamine-forming enzyme, histidine decarboxylase), while a more sustained gastrin stimulus causes first hypertrophy and then hyperplasia of the ECL cells in the rat (at most, a fivefold increase in the cell number). These effects can be demonstrated following infusion of gastrin or following an increase in the concentration of circulating gastrin of endogenous origin. The growth of the ECL cells reflects an accelerated self-replication rate. As studied in the rat, the self-replication rate is accelerated quite soon after induction of hypergastrinemia (blockade of acid secretion), the rate is maximally elevated within two weeks and then declines to control values at ten and 20 weeks despite the sustained hypergastrinemia. Lifelong hypergastrinemia in rats is associated not only with ECL-cell hyperplasia but also with an increased incidence of ECL-cell carcinoids. Recently, we could show that alpha-fluoromethylhistidine, which is a suicide inhibitor of histidine decarboxylase, effectively depletes the ECL cells of histamine and that the histamine-depleted ECL cells respond to gastrin with hyperplasia in a manner identical to normal ECL cells. Other factors beside gastrin seem to participate in the control of ECL-cell function and proliferation. Although exogenous somatostatin is known to suppress the activity of the ECL cells, we have failed to obtain evidence that the somatostatin cells in the oxyntic mucosa play a role in the physiological control of the ECL cells. The vagus, however, is important for the ability of the ECL cells to respond to gastrin. This conclusion is based on the observation that vagal denervation suppresses the hyperplastic response of the ECL cells to gastrin. Porta-cava shunting, on the other hand, greatly enhances the responsiveness of the ECL cells to gastrin. The mechanism behind this effect is unknown.  相似文献   

9.
Gastrin is both stimulatory and trophic to the cells of the gastric fundus--parietal and peptic cells, and enterochromaffin-like (ECL) cells which are major intermediaries of the gastrin effect. Gastrin (from the antrum) and acid (from the fundus) represent the interactive positive and negative limbs of a feedback loop. The nature and extent of sub-loops, perhaps involving the vagus, acetylcholine, histamine, and other peptides and cell products are at present unclear or unknown. Loss of either gastrin or acid has predictable consequences. Absent acid, as in pernicious anemia or as a result of omeprazole, leads to hypergastrinemia. In rats, such hypergastrinemia (gastrin > 1,000 pg/ml) causes fundic ECL hyperplasia and, eventually, carcinoids; in humans with pernicious anemia, hypergastrinemia causes ECL-cell hyperplasia, which may progress to carcinoids that are reversible upon withdrawal of gastrin, illustrated by three cases described here. Loss of gastrin by antrectomy for duodenal ulcer leads to fundic involution and marked reduction in basal acid output, maximal acid output, and fundic histamine. An uncontrolled excess of gastrin, as from a gastrinoma outside the negative feedback loop, causes acid and pepsin hypersecretion with upper GI mucosal damage, the Zollinger-Ellison syndrome. This paper summarizes the abnormal regulation of gastrin and the biology, natural history, diagnosis, and management of ZE syndrome by medical and surgical means.  相似文献   

10.
Enterochromaffin-like (ECL) cells play a pivotal role in theperipheral regulation of gastric acid secretion as they respond to thefunctionally important gastrointestinal hormones gastrin andsomatostatin and neural mediators such as pituitary adenylate cyclase-activating peptide and galanin. Gastrin is the keystimulus of histamine release from ECL cells in vivo and in vitro.Voltage-gated K+ andCa2+ channels have been detectedon isolated ECL cells. Exocytosis of histamine following gastrinstimulation and Ca2+ entry acrossthe plasma membrane is catalyzed by synaptobrevin andsynaptosomal-associated protein of 25 kDa, both characterized as asoluble N-ethylmaleimide-sensitivefactor attachment protein receptor protein. Histamine release occursfrom different cellular pools: preexisting vacuolar histamineimmediately released by Ca2+ entryor newly synthesized histamine following induction of histidine decarboxylase (HDC) by gastrin stimulation. Histamine is synthesized bycytoplasmic HDC and accumulated in secretory vesicles byproton-histamine countertransport via the vesicular monoaminetransporter subtype 2 (VMAT-2). The promoter region of HDC containsCa2+-, cAMP-, and protein kinaseC-responsive elements. The gene promoter for VMAT-2, however, lacksTATA boxes but contains regulatory elements for the hormones glucagonand somatostatin. Histamine secretion from ECL cells is thereby under acomplex regulation of hormonal signals and can be targeted at severalsteps during the process of exocytosis.

  相似文献   

11.
Summary Treatment of chickens, hamsters and guinea-pigs with large doses of the long-acting antisecretory agent omeprazole for 10 weeks resulted in elevated serum gastrin levels and in increased stomach weight and mass of oxyntic mucosa. Also the antral gastrin cell density was increased. Another striking effect was the hyperplasia of the histamine-producing enterochromaffin-like (ECL) cells — a prominent endocrine cell population with unknown function — in the oxyntic mucosa. Accordingly, the gastric mucosal histamine concentration and rate of histamine formation were increased in all three species. The results suggest that marked and long-lasting suppression of acid secretion leads to elevated serum gastrin levels and diffuse ECL cell hyperplasia not only in the rat, as previously seen, but also in the chicken, hamster and guinea-pig; this hyperplasia is associated with accelerated histamine formation in all three species. The following sequence of events is suggested to occur in mammalian as well as submammalian vertebrates: suppression of acid secretion — hypergastrinaemia — ECL cell hyperplasia.  相似文献   

12.
Summary The histochemical (iron, lipopigments, acid phosphatase, leucine aminopeptidase) and cytologic (lysosomes) changes occuring during pregnancy, lactation and involution of mouse, rat, rabbit, guinea-pig mammary glands are studied by light microscopy and electron microscopy.In all the animals examined, the mammary epithelium has an intracellular digestive system which is adapted to subserve two functions. The first one is the segregation of cytoplasmic components which often precedes cellular involution. The second one is the regulation of secretory processes in the non lactating glands. This digestion of endogenous materials results in the formation of various lytic bodies: dense bodies sometimes containing ferritin, vacuolated dense bodies with membranous residues, autophagic vacuoles. The lysosomes can give large complex dense bodies like lipofuscin pigments with or without ferritin.Leucine aminopeptidase which always disappears in the mouse mammary epithelium during lactation is not present in rat, rabbit, guinea-pig mammary epithelium. In these species only the vascular tissue contains the enzyme. This observation indicates that leucine aminopeptidase does not take care of the overproduction of secretory products in the non-lactating glands.Acid phosphatase is concentrated in secretory granules and in lytic bodies: multivesicular bodies, dense bodies with ferritin, vacuolated dense bodies, lipopigments. This enzyme constitutes probably a mechanism for controlling and triggering the destruction of the secretory material with no active elimination.The iron of the mammary epithelium appears in virgin mice older than 30 weeks and in mice, rats, rabbits, guinea-pigs during glandular cells involution. This is a catabolic iron located in lysosomes. Its amount depends upon the iron content of the milk and upon the competitive secretory and catabolic activities of the glandular cells. An explanation of iron disappearance during a second pregnancy and lactation is discussed.  相似文献   

13.
Histamine-containing enterochromaffin-like (ECL) cells are numerous in the gastric mucosa. They operate under the control of gastrin. ECL-cell tumors (gastric carcinoids) may arise as a consequence of sustained hypergastrinemia. For reasons unknown, such tumors have a female preponderance both in laboratory animals and humans. The present study consisted of four experiments exploring the possibility that gender-related factors might affect rat ECL cells. 1) A gender difference in terms of serum gastrin concentration and oxyntic mucosal histidine decarboxylase (HDC) activity appeared in Sprague-Dawley but not Wistar rats. Ultrastructural appearance of the ECL cells did not differ between genders. 2) During the different phases of the estrous cycle, the serum gastrin concentration, HDC activity and histamine concentration did not change. 3) During pregnancy, the serum gastrin concentration was suppressed, while it was increased during lactation. The HDC activity and the histamine concentration of the oxyntic mucosa were correlated with the levels of circulating gastrin. 4) Twelve-month treatment with estrogen-like agents, dieldrin and/or toxaphene (alone or in combination) was without any effect on the ECL cells neither in male nor in female rats. In conclusion, the ECL cells are under the control of gastrin, but probably not hormones that involve in the estrous cycle and pregnancy and lactation in rats. Possible gender-related factors behind the female preponderance of ECL-cell tumors remain unknown.  相似文献   

14.
The enterochromaffin-like (ECL) cells play an important role in the regulation of gastric acid secretion. They respond to gastrin by a prompt increase in histamine secretion, an effect which is mediated by the CCK-(B)/gastrin receptor acting through the IP(3)/DAG pathway. In the rat, long-term treatment with acid secretion inhibitors induces hypergastrinaemia which, in turn, results in ECL cell hypertrophy and hyperplasia. The aim of the present study was to evaluate various functional parameters in acutely isolated rat ECL cells, following long-term hypergastrinaemia in vivo. Rats were treated with vehicle or a supramaximal daily dose of omeprazole for more than 10 weeks to ensure ECL cell hyperplasia. ECL cells were isolated from vehicle-treated animals and 24, 72 and 120 h after the last dose of omeprazole. The functional activity of the acutely isolated ECL cells was determined by measuring gastrin-and forskolin-induced histamine secretion. Changes in cytosolic free calcium upon gastrin stimulation were monitored by digital video imaging. ECL cells successively regained their ability to respond to gastrin following long-term hypergastrinaemia, reaching close to vehicle-treated levels 120 h after the last dose of omeprazole. In the rat, the response pattern of the ECL cells appears to normalise in parallel with the normalisation of plasma gastrin levels.  相似文献   

15.
Gastrin-recognizing CCK2 receptors are expressed in parietal cells and in so-called ECL cells in the acid-producing part of the stomach. ECL cells are endocrine/paracrine cells that produce and store histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. The ECL cells are the principal cellular transducer of the gastrin-acid signal. Activation of the CCK2 receptor results in mobilization of histamine (and pancreastatin) from the ECL cells with consequent activation of the parietal cell histamine H2 receptor. Thus, release of ECL-cell histamine is a key event in the process of gastrin-stimulated acid secretion. The oxyntic mucosal histidine decarboxylase (HDC) activity and the serum pancreastatin concentration are useful markers for the activity of the gastrin-ECL cell axis. Powerful and selective CCK2 receptor antagonits have been developed from a series of benzodiazepine compounds. These agents are useful tools to study how gastrin controls the ECL cells. Conversely, the close control of ECL cells by gastrin makes the gastrin-ECL cell axis well suited for evaluating the antagonistic potential of CCK2 receptor antagonists with the ECL-cell HDC activity as a notably sensitive and reliable parameter. The CCK2 receptor antagonists YF476, YM022, RP73870, JB93182 and AG041R were found to cause prompt inhibition of ECL-cell histamine and pancreastatin secretion and synthesis. The circulating pancreastatin concentration is raised, was lowered when the action of gastrin on the ECL cells was blocked by the CCK2 receptor antagonists. These effects were associated with inhibition of gastrin-stimulated acid secretion. In addition, sustained receptor blockade was manifested in permanently decreased oxyntic mucosal HDC activity, histamine concentration and HDC mRNA and CGA mRNA concentrations. CCK2 receptor blockade also induced hypergastrinemia, which probably reflects the impaired gastric acid secretion (no acid feedback inhibition of gastrin release). Upon withdrawal of the CCK2 receptor antagonists, their effects on the ECL cells were readily reversible. In conclusion, gastrin mobilizes histamine from the ECL cells, thereby provoking the parietal cells to secrete acid. While CCK2 receptor blockade prevents gastrin from evoking acid secretion, it is without effect on basal and vagally stimulated acid secretion. We conclude that specific and potent CCK2 receptor antagonists represent powerful tools to explore the functional significance of the ECL cells.  相似文献   

16.
Summary In the rat, gastric histamine is stored predominantly in the enterochromaffin-like (ECL) cells, which are located basally in the oxyntic mucosa. The functional significance of histamine in the ECL cells is a matter of speculation. In this study the effect of depletion of histamine on the properties and ultrastructure of the ECL cells was examined. Histamine synthesis was inhibited with -fluoromethylhistidine (3 mg·kg-1·h-1) given via osmotic minipumps over a period of 24 h. The treatment reduced the histidine decarboxylase activity (approximately 20% remaining) and histamine concentration (less than 20% remaining) in the oxyntic mucosa, as well as the intensity of histamine- and chromogranin A-immunostaining in the ECL cells, compared to control rats. The cytoplasmic (secretory) granules/vesicles were greatly reduced in number and size following -fluoromethylhistidine administration. The histamine immunostaining of the mast cells, which occurs at the mucosal surface and in the submucosa, appeared unaffected. We conclude that ECL cell histamine accounts for at least 80% of the total oxyntic mucosal histamine in the rat and that it represents a more mobile pool than mast cell histamine. The reduction in the number and size of the ECL cell granules/vesicles following histamine depletion is in accord with the idea that they represent the storage site for histamine.  相似文献   

17.
We examined the effects of a newly synthesized gastrin receptor antagonist, AG-041R, on the growth of enterochromaffin-like (ECL) carcinoid tumors in Mastomys natalensis both in vitro and in vivo. AG-041R was as potent as the well known gastrin antagonist L365,260 in inhibiting not only the gastrin-induced release of histamine from but also histidine decarboxylase (HDC) gene expression in the ECL carcinoid tumor cells. AG-041R also inhibited gastrin-induced DNA synthesis and c-fos gene expression in the tumor cells. Furthermore, AG-041R significantly inhibited the growth of the transplanted Mastomys ECL carcinoid tumors in vivo. From these data, it is concluded that endogenous gastrin is involved in the growth of ECL carcinoid tumors in Mastomys natalensis. Moreover, AG-041R is shown to have a potential as an anti-neoplastic agent for ECL carcinoid tumor of the stomach.  相似文献   

18.
Pharmacological inhibition of gastric acid secretion and subsequent hypergastrinemia in Mastomys natalensis is an experimental model well suited for the study of gastric carcinoid formation. The genetic susceptibility of Mastomys to develop such tumors is a feature reminiscent of the situation in patients with the MEN-1 Zollinger Ellison syndrome, in whom tumor-induced hypergastrinemia, promotes the development of gastric carcinoids. Chronic hypergastrinemia, induced by the irreversible H2-receptor antagonist loxtidine will cause carcinoid formation in Mastomys already after four to six months. As in humans, gastric carcinoids in Mastomys are mainly composed of enterochromaffinlike (ECL) cells and have low malignant potential. Administration of exogenous gastrin to normal young animals increases the expression of histidine decarboxylase (HDC) mRNA in the oxyntic mucosa within 30 minutes. Endogenous hypergastrinemia, induced by short-time loxtidine treatment (three to 29 days) enhances the expression of HDC mRNA, histamine contents and ECL cell numbers in the oxyntic mucosa. Long-term loxtidine treatment (seven to 21 months) results in sustained hypergastrinemia and tumor formation. Tumor-bearing animals exhibited an increase in HDC mRNA and histamine content in the oxyntic mucosa as well as increased urinary excretion of the main histamine metabolite, tele-methylimidazole acetic acid (MeImAA). Subsequent to cessation of loxtidine treatment for two weeks, all parameters of histamine metabolism were normalized in tumor-bearing animals. These results indicate that gastric carcinoids developing during hypergastrinemia are well-differentiated neoplasms whose histamine synthesis and metabolism is regulated by plasma gastrin.  相似文献   

19.
Helicobacter pylori infection is a causal factor of gastric cancer (which is associated with low gastric acid secretion) or duodenal ulcer (high acid secretion). Parietal cells and ECL cells in the stomach are controlled by gastrin, which plays a crucial role in the regulation of acid secretion. The present study was undertaken to identify a possible role of gastrin in determining the different responses of the parietal cells and ECL cells to chronic H. pylori infection. Wild-type (C57BL/6J) gastrin(+/+) mice and gastrin(-/-) knockout mice, generated through targeted gene disruption and backcrossed eight times to C57BL/6J, were infected with H. pylori for 9 months. The acid output was measured 4 h after pylorus ligation (known to cause vagal excitation). The gastric mucosa was examined by immunocytochemistry with antisera to alpha-subunit of H+/K(+)-ATPase for the parietal cells, and to histamine and vesicle monoamine transporter-2 for the ECL cells, and by quantitative electron microscopy. In infected gastrin(+/+) mice, the acid output and the percentage of secreting parietal cells (freely fed state) were 20-30% of the values in uninfected controls, while the density and ultrastructure of parietal cells were normal. The infected mice had hypergastrinemia and displayed hypertrophy and hyperplasia of ECL cells. Although uninfected gastrin(-/-) mice had lower the acid output than uninfected gastrin(+/+) mice, there was a higher acid output (approximately 3 times) in infected gastrin(-/-) mice than their uninfected homologues. The numbers of parietal cells and ECL cells remained unchanged in infected gastrin(-/-) mice. In conclusion, chronic H. pylori infection results to impaired parietal-cell function (acid hyposecretion), hypergastrinemia and hyperplasia of ECL cells in wild-type mice but leads to vagally induced hypersecretion in gastrin-deficient mice.  相似文献   

20.
The ECL cells are histamine- and peptide hormone-producing endocrine cells in the rat oxyntic mucosa. They are rich in secretory vesicles and also contain microvesicles and electron-dense granules. They operate under the control of circulating gastrin. In the present study, we examined the ECL-cell ultrastructure after long term treatment with omeprazole, which is known to induce hypergastrinemia, and after withdrawal of the drug. Rats received omeprazole (400 µmol/kg per day, orally) for 16 days and were killed 1, 5, 20, or 40 days after the last dose of the drug. Oxyntic mucosal specimens were processed for electron microscopy. Electron micrographs of ECL-cell profiles were analyzed planimetrically. The ECL-cell profile area increased promptly in response to omeprazole, the secretory vesicles and granules were reduced in number and volume density, the microvesicles were unchanged in number but reduced in volume density, and vacuoles appeared. Within a week after stopping the omeprazole treatment, the numbers and volume densities of secretory vesicles and microvesicles returned to pre-stimulation values. Also, the vacuoles disappeared promptly. The ECL-cell profile area decreased below the pre-stimulation level within five days after stopping treatment, while, in contrast, the granules increased in number and volume density. Somewhat surprisingly, the cell size and the granule compartment did not return to normal until 40 days after stopping treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号