首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage T5 DNA was examined in an electron microscope after limited digestion with exonuclease III from Escherichia coli. The effect of the exonuclease treatment was to convert each naturally occurring single-chain interruption in T5 DNA into a short segment of single-stranded DNA. The locations of these segments were determined for T5st(+) DNA, T5st(0) DNA, and fragments of T5st(0) DNA generated by EcoRI restriction endonuclease. The results indicate that single-chain interruptions occurr in a variable, but nonrandom, manner in T5 DNA. T5st(+) DNA has four principal interruptions located at sites approximately 7.9, 18.5, 32.6, and 64.8% from one end of the molecule. Interruptions occur at these sites in 80 to 90% of the population. A large number of additional sites, located primarily at the ends of the DNA, contain interruptions at lower frequencies. The average number of interruptions per genome, as determined by this method, is 8. A similar distribution of breaks occurs in T5st(0) DNA, except that the 32.6% site is missing. At least one of the principal interruptions is reproducibly located within an interval of 0.2% of the entire DNA.  相似文献   

2.
Mutations of bacteriophage T5 were isolated which lack one or more of the natural single-chain interruptions that occur in the mature DNA of this virus. Interruption-deficient mutants were detected by screening survivors of hydroxylamine mutagenesis for altered DNA structure by electrophoresis in agarose slab gels. Over 60 independent mutants were isolated from a survey of approximately 800 phages particles. All of the mutants were viable and could be grouped into two classes. Mutants in one class lacked one of the localized sites where interruptions occur in T5 DNA. To date, mutants that affect five different sites have been obtained. Mutants in the other class were essentially free from interruptions or had a reduced frequency of interruptions throughout the genome. The members of this class included several amber mutants. Complementation tests indicated that at least two genes are required for the presence of interruptions in mature T5 DNA.  相似文献   

3.
The DNA of bacteriophage BF23 possesses two structural features, localized single-chain interruptions and a large terminal repetition, previously described for T5, a closely related virus. As is the case for T5, single-chain interruptions occur with variable frequencies at a small number of fixed sites within one strand of the double-stranded BF23 genome. The sites where interruptions occur with the highest frequencies were napped by an electrophoretic analysis of the single-stranded fragments produced by denaturation of BF23 DNA. The positions of these fragments were determined by degrading BF23 DNA to various extents with lambda exonuclease and observing the relative order with which they were (i) degraded or (ii) released intact from the undenatured duplex. The exact locations of the interruptions were determined from analysis of analogous duplex fragments produced by degrading exonuclease III-treated BF23 DNA with a single-strand-specific endonuclease. BF23 has five principal sites (located at 7.9, 18.7, 32.4, 65.8, and 99.6% from the left end of the DNA) where interruptions occur in most molecules. The principal interruptions in T5 DNA occur at similar positions. The locations of eight secondary interruptions in BF23 DNA were also determined. In general, BF23 DNA has fewer secondary interruptions than t5 dna, although there is at least one location where an interruption occurs with a greater frequency in BF23. The presence of a terminal repetition in BF23 DNA was demonstrated by annealing ligase-repaired molecules that had been partially digested with lambda exonuclease. If the complementary sequences at both ends of the DNA were exposed by exonuclease treatment, the duplex segment that resulted from annealing could be released by digestion with a single-strand-specific endonuclease. This segment was analyzed by agarose gel electrophoresis and found to represent 8.4% of BF23 DNA.  相似文献   

4.
Upon denaturation, T5 DNA yields a large number of discrete, single-chain fragments that can be resolved by agarose gel electrophoresis. The positions of the more prominent of these fragments in the T5 duplex were determined by analyzing their sensitivity to digestion with λ exonuclease and their distribution among EcoRI fragments of T5 DNA. These experiments also provide firm evidence concerning the polarity of the strands in T5 DNA. An analogous study was carried out on the fragments produced by treating exonuclease III-degraded T5 DNA with the single-strand-specific SI endonuclease. This procedure yielded over 40 discrete duplex fragments that could be resolved with considerable precision by agarose gel electrophoresis. The positions of most of these fragments were determined by analyzing EcoRI fragments of T5st(+) and T5st(0) DNA. Over 20 sites where single-chain interruptions can occur in T5 DNA were identified, and the distribution of interruptions within the terminal repetition was shown to be identical at both ends of the molecule. A precise value for the size of the terminal repetition in T5 DNA was obtained by analyzing SI endonuclease digests of ligase-repaired, circular T5 DNA in agarose gels. The repeated segment represented 8.3% of the T5st(+) DNA. The results of this study also provide information concerning the properties of λ exonuclease. Hydrolysis by this enzyme was not terminated when single-chain interruptions were encountered either in the strand being degraded or in the complementary strand.  相似文献   

5.
The properties of viable mutants of bacteriophage T5 that lack, singly, each of the four major sites at which single-chain interruptions normally occur in T5 DNA are described. The mutations responsible for loss of each interruption were mapped by analysis with HhaI, a restriction endonuclease with a cleavage site (pGCGC) that occurs at the 5' termini of the major interruptions (B. P. Nichols and J. E. Donelson, J. Virol. 22:520-526, 1977). For each mutant tested, loss of a specific interruption resulted in loss of a specific HhaI cleavage site. Multiple single-site mutants were constructed to determine the effect of loss of more than one interruption on phage viability. These recombinants, including a phage that lacks the four major interruptible sites, were fully viable and did not exhibit a compensating increase in the frequency of minor interruptions. The effect of loss of a specific interruption on genetic recombination was tested in two-factor crosses with markers that occur close to, but on opposite sites of, the interruption. Loss of the interruptible site did not affect recombination frequency.  相似文献   

6.
A physical map of the bacteriophage T5 genome was constructed by ordering the fragments produced by cleavage of T5 DNA with the restriction endonucleases SalI (4 fragments), SmaI (4 fragments), BamI (5 fragments), and HpaI (28 fragments). The following techniques were used to order the fragments. (i) Digestion of DNA from T5 heat-stable deletion mutants was used to identify fragments located in the deletable region. (ii) Fragments near the ends of the T5 DNA molecule were located by treating T5 DNA with lambda exonuclease before restriction endonuclease cleavage. (iii) Fragments spanning other restriction endonuclease cleavage sites were identified by combined digestion of T5 DNA with two restriction endonucleases. (iv) The general location of some fragments was determined by isolating individual restriction fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. (v) Treatment of restriction digests with lambda exonuclease before digestion with a second restriction enzyme was used to identify fragments near, but not spanning, restriction cleavage sites. (vi) Exonucleases III treatment of T5 DNA before restriction endonuclease cleavage was used to locate fragments spanning or near the natural T5 single-chain interruptions. (vii) Analysis of the products of incomplete restriction endonuclease cleavage was used to identify adjacent fragments.  相似文献   

7.
New physical map of bacteriophage T5 DNA.   总被引:10,自引:4,他引:6       下载免费PDF全文
The locations of 103 cleavage sites, produced by 13 restriction endonucleases, were mapped on the DNA of bacteriophage T5. Single- and double-digest fragment sizes were determined by agarose gel electrophoresis, using restriction fragments of phi X174 DNA and lambda DNA as molecular weight standards. Map coordinates were determined by a computer-based least-squares procedures (J. Schroeder and F. Blattner, Gene [Amst] 4:167-174, 1978). The fragment sizes predicted by the final map are all within 2% of the measured values. Based on this analysis, T5st(+) DNA contains 121,300 base pairs (Mr, 80.3 X 10(6) and has a terminal repetition of 10,160 base pairs (Mr, 6.7 X 10(6)). Restriction endonuclease analysis after treatment with exonuclease III and a single-strand-specific endonuclease allowed precise localization of five of the natural single-chain interruptions in T5 DNA. Revised locations for several T5 deletions were also determined.  相似文献   

8.
An examination was made of the properties of T5HA4, a mutant of bacteriophage T5 that lacks the single-chain interruption that occurs at 7.9% from the left end of the genome. The DNAs of T5HA4 and the wild type were compared by electrophoresis in agarose gels of both single-stranded fragments produced by denaturation and duplex fragments generated by sequential treatment with exonuclease III and SI nuclease. These studies demonstrated that T5HA4 also lacks an interruption that occurs at 99.6% in wild-type DNA. The interruptions at 7.9 and 99.6% therefore occur within the 8.3% of T5 DNA that is terminally repetitious. Evidence on the location of other interruptions within the terminal repetition was also obtained. Analysis of T5HA4 with a restriction endonuclease indicated that the interruption deficiency is not due to a deletion or addition mutation. The injection of T5HA4 DNA into a host bacterium was found to occur, as with the wild type, in a two-step manner. The interruption at 7.9% is therefore not required for stopping DNA transfer after the initial 8% segment has been injected.  相似文献   

9.
The processing of newly replicated concatameric T5 DNA into both single stranded DNA changed of unit length and single-stranded fragments of sizes comparable to those found in mature T5 virion DNA occurs in the absence of late T5 protein synthesis. The formation of unit-length, single-stranded DNA chains does not require the early T5 gene D15 nuclease: however, the subsequent formation of the single-stranded fragments does require that the D15 nuclease be functional. A reexamination of the properties of the purified D15 nuclease under a variety of conditions showed that, in addition to functioning as a 5' leads to 3' exonuclease, the enzyme can also introduce endonucleolytic scissions into mature T5 DNA in a reaction that requires duplex T5 DNA and preexisting, single-stranded interruptions.  相似文献   

10.
The Arrangement of Information in DNA Molecules   总被引:12,自引:2,他引:10       下载免费PDF全文
The anatomy of DNA molecules isolated from mature bacteriophage is reviewed. These molecules are linear, duplex DNA consisting mainly of uninterrupted polynucleotide chains. Certain phage (T5 and PB) contain four specifically located interruptions. While the nucleotide sequence of most of these molecules is unique (T5, T3, T7, λ), some are circular permutations of each other (T2, T4, P22). Partial degradation of these DNA molecules by exonuclease III predisposes some of them to form circles upon annealing, but indicating they are terminally redundant.  相似文献   

11.
Transfection of Escherichia coli spheroplasts by native T5 phage DNA was not affected by treatment with polynucleotide ligase. Denatured T5 phage DNA infectivity, only 0.1% of the native DNA level, was increased slightly by polynucleotide ligase treatment. Renatured T5 phage DNA infectivity was also increased slightly by polynucleotide ligase treatment. To form an infective center with rec(+) spheroplasts, 1.6 to 2.1 native T5 phage DNA molecules were required; however, 1.4 T5 phage DNA molecules were required to form an infective center with recA(-)B(-) spheroplasts, and one molecule was sometimes sufficient for rec B(-) spheroplasts. Polynucleotide ligase treatment of T5 phage DNA had no effect on these parameters. Thus, the single-strand interruptions of T5 phage DNA are probably not essential to the survival of the parental T5 phage DNA, and T5 phage DNA, especially the denatured form, is highly sensitive to some nucleases in E. coli spheroplasts.  相似文献   

12.
The substrate specificity of 49+-enzyme was investigated in vitro. The enzyme showed a marked preference for rapidly sedimenting T4 DNA (greater than 1000 S) when helix-destabilizing proteins from Escherichia coli or phage T4 were added to the reaction. Regular replicative T4 DNA (200-S DNA) or denatured T4 DNA was not cleaved by the enzyme in the presence of these proteins but if they were omitted from the reaction both DNAs become good substrates for the enzyme. 200-S DNA was cleaved at its natural sites of single strandedness which occur at one-genome intervals. Gaps in T4 DNA which were constructed by treatment of a nicked DNA with exonuclease III were also cleaved by 49+-enzyme in the absence of helix-destabilizing proteins. Single-stranded T4 DNA was extensively degraded and up to 50% of the material was found to be acid-soluble in a limit digest. The degradation products were predominantly oligonucleotides of random size. No preference for a 5'-terminal nucleotide was observed in material from a limit digest with M13 DNA. Double-stranded DNA was nicked upon exposure to 49+-enzyme and double-strand breakage finally occurred by an accumulation of single-strand interruptions. No acid-soluble material was produced from native T4 DNA. The introduction of nicks in native DNA did not improve its properties as a substrate for the enzyme. Double-stranded DNA was about 100-fold less sensitive to the enzyme than single-stranded DNA.  相似文献   

13.
Concatemeric DNA from T7-infected cells consists of phage genomes in a linear head-to-tail arrangement. Adjacent genomes within a concatemer overlap for the length of the terminal repetition. Fast-sedimenting T7 DNA contains single-stranded regions at roughly unit-lentth intervals but these interruptions are heterogeneously distributed and do not occur at the genetic termini. Mutations in either bacteriophage genes 9, 18, or 19 (required for DNA maturation and packaging) lead to the synthesis and persistence of DNA with fewer interruptions than normal.  相似文献   

14.
Presence of random single-strand gaps in mycobacteriophage I3 DNA   总被引:1,自引:0,他引:1  
A B Reddy  K P Gopinathan 《Gene》1986,44(2-3):227-234
The genomic double-stranded DNA of mycobacteriophage I3, when denatured with alkali, heat, formamide or dimethylsulfoxide, breaks down to heterogeneous-sized single-strand (ss) fragments smaller than the expected intact unit genome length suggesting the presence of random ss interruptions on both the strands. The occurrence of the interruptions at random is also demonstrated by two-dimensional gel electrophoresis of the restriction fragments of I3 DNA. These interruptions have no adverse effect on the phage infectivity or DNA transfectivity. Studies with nuclease BAL 31 and end-labeling analysis confirm the presence of random interruptions. Detailed analysis using T4 DNA ligase, nuclease S1 and DNA polymerase I Klenow fragment revealed that the interruptions are in the form of small gaps rather than single phosphodiester bond breaks. The average length of the gap is about 10 nucleotides long and there are 13 to 14 such gaps per DNA molecule.  相似文献   

15.
The first-step transfer-DNA injection-stop signal of bacteriophage T5   总被引:1,自引:0,他引:1  
Bacteriophage T5 is different from most phages in that its DNA is injected in two steps during infection. The region containing the injection stop signal (iss) has been cloned and sequenced and found to contain numerous large repeats and inverted repeats which may be part of the iss. The most impressive of these are the 31-bp repeat units (rb) which are present three times in 99 bp. The rb repeats, themselves, contain inverted repeats so that mutually exclusive stem-and-loop structures may potentially form, not only within the repeats, but also between them. Another pair of repeats (21 bp each) contains two sequences resembling DnaA protein-binding sites. The region sequenced also contains one of the T5 site-specific strand interruptions and this was found to lie at the base of a perfect 9-bp palindrome.  相似文献   

16.
DNA deoxyribophosphodiesterase.   总被引:17,自引:0,他引:17       下载免费PDF全文
A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deoxyribophosphodiesterase (dRpase). The protein presumably is active in DNA excision repair to remove a sugar-phosphate residue from an endonucleolytically incised apurinic/apyrimidinic site, prior to gap filling and ligation.  相似文献   

17.
With the use of an in vitro complementation assay to measure activity, the gene 4 protein of bacteriophage T7 has been purified 1000-fold to yield a nearly homogeneous protein. The purified gene 4 protein is a single polypeptide having a molecular weight of 58,000. In addition to being essential for T7 DNA replication in vivo and in vitro, the gene 4 protein is required for DNA synthesis by the purified T7 DNA polymerase on duplex T7 DNA templates. In the absence of ribonucleoside 5'-triphosphates, DNA synthesis by the gene 4 protein and the T7 DNA polymerase is dependent on phosphodiester bond interruptions containing 3'-hydroxyl groups (nicks) in the duplex DNA. The reaction is specific for the T7 DNA polymerase, but any duplex DNA containing nicks can serve as template. The Km for nicks in the reaction is 3 x 10(-10) M.  相似文献   

18.
A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.  相似文献   

19.
Summary We have investigated the fate of the yeast 2 m DNA plasmid in strains with a temperature sensitive mutation of DNA ligase. At the restrictive temperature the plasmid DNA collects as an open circular form with single strand interruptions. Both alpha factor pheromone, which arrests cells before the start of S phase, and hydroxyurea, which blocks progression through S phase, prevent the appearance of the open circular form. Thus, interrupted plasmid DNA does not accumulate in the absence of DNA replication. On average the interrupted molecules contain four to five interruptions per newly replicated strand. Most of the interruptions are nicks (breaks in a single phosphate ester bond) rather than gaps (absence of one or more nucleotides in a strand) as judged by the in vitro conversion of the interrupted molecules into a covalently closed form by DNA ligase. Mapping of the position of the interruptions reveals no predominate sites.  相似文献   

20.
Collapse and repair of replication forks in Escherichia coli   总被引:19,自引:6,他引:13  
Single-strand interruptions in a template DNA are likely to cause collapse of replication forks. We propose a model for the repair of collapsed replication forks in Escherichia coli by the RecBCD recombinational pathway. The model gives reasons for the preferential orientation of Chi sites in the E. coli chromosome and accounts for the hyper-rec phenotype of the strains with increased numbers of single-strand interruptions in their DNA. On the basis of the model we offer schemes for various repeat-mediated recombinational events and discuss a mechanism for quasi-conservative DNA replication explaining the recombinational repair-associated mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号