首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

2.
The current general model of HIV viral entry involves the binding of the trimeric viral envelope glycoprotein gp120/gp41 to cell surface receptor CD4 and chemokine co-receptor CXCR4 or CCR5, which triggers conformational changes in the envelope proteins. Gp120 then dissociates from gp41, allowing for the fusion peptide to be inserted into the target membrane and the pre-hairpin configuration of the ectodomain to form. The C-terminal heptad repeat region and the leucine/isoleucine zipper region then form the thermostable six-helix coiled-coil, which drives the membrane merger and eventual fusion. This model needs updating, as there has been a wealth of data produced in the last few years concerning HIV entry, including target cell dependencies, fusion kinetic data, and conformational intermediates. A more complete model must include the involvement of membrane microdomains, actin polymerization, glycosphingolipids, and possibly CD4 and chemokine signaling in entry. In addition, kinetic experiments involving the addition of fusion inhibitors have revealed some of the rate-limiting steps in this process, adding a temporal component to the model. A review of these data that may require an updated version of the original model is presented here.  相似文献   

3.
The HIV Env-mediated fusion reaction   总被引:22,自引:0,他引:22  
The current general model of HIV viral entry involves the binding of the trimeric viral envelope glycoprotein gp120/gp41 to cell surface receptor CD4 and chemokine co-receptor CXCR4 or CCR5, which triggers conformational changes in the envelope proteins. Gp120 then dissociates from gp41, allowing for the fusion peptide to be inserted into the target membrane and the pre-hairpin configuration of the ectodomain to form. The C-terminal heptad repeat region and the leucine/isoleucine zipper region then form the thermostable six-helix coiled-coil, which drives the membrane merger and eventual fusion. This model needs updating, as there has been a wealth of data produced in the last few years concerning HIV entry, including target cell dependencies, fusion kinetic data, and conformational intermediates. A more complete model must include the involvement of membrane microdomains, actin polymerization, glycosphingolipids, and possibly CD4 and chemokine signaling in entry. In addition, kinetic experiments involving the addition of fusion inhibitors have revealed some of the rate-limiting steps in this process, adding a temporal component to the model. A review of these data that may require an updated version of the original model is presented here.  相似文献   

4.
The inhibitors of viral adsorption are a new generation of antiviral drugs, which can be used in the therapy of HIV infection. The review presents different classes of the HIV entry inhibitors, which are grouped according to the processes they are targeting: the interaction of the viral glycoprotein gp120 with the cell receptor CD4, the secondary interaction of gp120 with the chemokine receptors CCR5 or CXCR4, or the formation of the gp41 six-helix bundle required for the fusion of the virus with the cell membrane.  相似文献   

5.
Magnus C  Regoes RR 《PloS one》2012,7(3):e33441
Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems as well.  相似文献   

6.
Human immunodeficiency virus (HIV) envelope binds CD4 and a chemokine receptor in sequence, releasing hydrophobic viral gp41 residues into the target membrane. HIV entry required actin-dependent concentration of coreceptors, which could be disrupted by cytochalasin D (CytoD) without an effect on cell viability or mitosis. Pretreatment of peripheral blood mononuclear cells, but not virus, inhibited entry and infection. Immunofluorescent confocal microscopy of activated cells revealed CD4 and CXCR4 in nonoverlapping patterns. Addition of gp120 caused polarized cocapping of both molecules with subsequent pseudopod formation, while CytoD pretreatment blocked these membrane changes completely.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells requires folding of two heptad-repeat regions (N-HR and C-HR) of gp41 into a trimer of N-HR and C-HR hairpins, which brings viral and target cell membranes together to facilitate membrane fusion. Peptides corresponding to the N-HR and C-HR of gp41 are potent inhibitors of HIV infection. Here we report new findings on the mechanism of inhibition of a N-HR peptide and compare these data with inhibition by a C-HR peptide. Using intact envelope glycoprotein (Env) under fusogenic conditions, we show that the N-HR peptide preferentially binds receptor-activated Env and that CD4 binding is sufficient for triggering conformational changes that allow the peptide to bind Env, results similar to those seen with the C-HR peptide. However, activation by both CD4 and chemokine receptors further enhances Env binding by both peptides. We also show that a nonconservative mutation in the N-HR of gp41 abolishes C-HR peptide but not N-HR peptide binding to gp41. These results indicate that there are two distinct sites in receptor-activated Env that are potential targets for drug or vaccine development.  相似文献   

8.
The chemokines and their receptors have been receiving exceptional attention in recent years following the discoveries that some chemokines could specifically block human immunodeficiency virus type 1 (HIV-1) infection and that certain chemokine receptors were the long-sought coreceptors which, along with CD4, are required for the productive entry of HIV-1 and HIV-2 isolates. Several chemokine receptors or orphan chemokine receptor-like molecules can support the entry of various viral strains, but the clinical significance of the CXCR4 and CCR5 coreceptors appear to overshadow a critical role for any of the other coreceptors and all HIV-1 and HIV-2 strains best employ one or both of these coreceptors. Binding of the HIV-1 envelope glycoprotein gp120 subunit to CD4 and/or an appropriate chemokine receptor triggers conformational changes in the envelope glycoprotein oligomer that allow it to facilitate the fusion of the viral and host cell membranes. During these interactions, gp120 appears to be capable of inducing a variety of signaling events, all of which are still not defined in detail. In addition, the more recently observed dichotomous effects, of both inhibition and enhancement, that chemokines and their receptor signaling events elicit on the HIV-1 entry and replication processes has once again highlighted the intricate and complex balance of factors that govern the pathogenic process. Here, we will review and discuss these new observations summarizing the potential significance these processes may have in HIV-1 infection. Understanding the complexities and significance of the signaling processes that the chemokines and viral products induce may substantially enhance our understanding of HIV-1 pathogenesis, and perhaps facilitate the discovery of new ways for the prevention and treatment of HIV-1 disease.  相似文献   

9.
Filamin-A regulates actin-dependent clustering of HIV receptors   总被引:5,自引:0,他引:5  
Human immunodeficiency virus (HIV)-1 infection requires envelope (Env) glycoprotein gp120-induced clustering of CD4 and coreceptors (CCR5 or CXCR4) on the cell surface; this enables Env gp41 activation and formation of a complex that mediates fusion between Env-containing and target-cell membranes. Kinetic studies show that viral receptors are actively transported to the Env-receptor interface in a process that depends on plasma membrane composition and the actin cytoskeleton. The mechanisms by which HIV-1 induces F-actin rearrangement in the target cell remain largely unknown. Here, we show that CD4 and the coreceptors interact with the actin-binding protein filamin-A, whose binding to HIV-1 receptors regulates their clustering on the cell surface. We found that gp120 binding to cell receptors induces transient cofilin-phosphorylation inactivation through a RhoA-ROCK-dependent mechanism. Blockade of filamin-A interaction with CD4 and/or coreceptors inhibits gp120-induced RhoA activation and cofilin inactivation. Our results thus identify filamin-A as an adaptor protein that links HIV-1 receptors to the actin cytoskeleton remodelling machinery, which may facilitate virus infection.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is composed of a complex between the surface subunit gp120, which binds to cellular receptors, and the transmembrane subunit gp41. Upon activation of the envelope glycoprotein by cellular receptors, gp41 undergoes conformational changes that mediate fusion of the viral and cellular membranes. Prior to formation of a fusogenic "trimer-of-hairpins" structure, gp41 transiently adopts a prefusogenic conformation whose structural features are poorly understood. An important approach toward understanding structural conformations of gp41 during HIV-1 entry has been to analyze the structural targets of gp41 inhibitors. We have constructed epitope-tagged versions of 5-Helix, a designed protein that binds to the C-peptide region of gp41 and inhibits HIV-1 membrane fusion. Using these 5-Helix variants, we examined which conformation of gp41 is the target of 5-Helix. We find that although 5-Helix binds poorly to native gp41, it binds strongly to gp41 activated by interaction of the envelope protein with either soluble CD4 or membrane-bound cellular receptors. This preferential interaction with activated gp41 results in the accumulation of 5-Helix on the surface of activated cells. These results strongly suggest that the gp41 prefusogenic intermediate is the target of 5-Helix and that this intermediate has a remarkably "open" structure, with exposed C-peptide regions. These results provide important structural information about this intermediate that should facilitate the development of HIV-1 entry inhibitors and may lead to new vaccine strategies.  相似文献   

11.
The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1QH1549.13 blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.  相似文献   

12.
To infect target cells, the human immunodeficiency virus (HIV) type I (HIV-1) must engage not only the well-known CD4 molecule, but it also requires one of several recently described coreceptors. In particular, the CXCR4 (LESTR/fusin) receptor allows fusion and entry of T-tropic strains of HIV, whereas CCR5 is the major coreceptor used by primary HIV-1 strains that infect macrophages and CD4(+) T-helper cells (M-tropic viruses). In addition, the alpha chemokine SDF1alpha and the beta chemokines MIP1alpha, MIP1beta, and RANTES, natural ligands of CXCR4 and CCR5, respectively, are potent soluble inhibitors of HIV infection by blocking the binding between the viral envelope glycoprotein gp120 and the coreceptors. Approximately two-thirds of individuals with acquired immunodeficiency syndrome (AIDS) show neurologic complications, which are referred to a syndrome called AIDS dementia complex or HIV-1-associated cognitive/motor complex. The HIV-1 coat glycoprotein gp120 has been proposed as the major etiologic agent for neuronal damage, mediating both direct and indirect effects on the CNS. Furthermore, recent findings showing the presence of chemokine receptors on the surface of different cell types resident in the CNS raise the possibility that the association of gp120 with these receptors may contribute to the pathogenesis of neurological dysfunction. Here, we address the possible role of alpha and beta chemokines in inhibiting gp120-mediated neurotoxicity using the human neuroblastoma CHP100 cell line as an experimental model. We have previously shown that, in CHP100 cells, picomolar concentrations of gp120 produce a significant increase in cell death, which seems to proceed through a Ca(2+) - and NMDA receptor-dependent cascade. In this study, we gained insight into the mechanism(s) of neurotoxicity elicited by the viral glycoprotein. We found that CHP100 cells constitutively express both CXCR4 and CCR5 receptors and that stimulation with phorbol 12-myristate 13-acetate down-regulates their expression, thus preventing gp120-induced cell death. Furthermore, all the natural ligands of these receptors exerted protective effects against gp120-mediated neuronal damage, although with different efficiencies. These findings, together with our previous reports, suggest that the neuronal injury observed in HIV-1 infection could be due to direct (or indirect) interactions between the viral protein gp120 and chemokine and/or NMDA receptors.  相似文献   

13.
The gp120 envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and chemokine receptors on the target cell. Primary, clinical HIV-1 isolates require interaction with CD4 to allow gp120 to bind the CCR5 chemokine receptor efficiently. We adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for the adaptation were limited to alteration of glycosylation addition sites in the V2 loop-V1-V2 stem. The gp120 glycoproteins of the adapted viruses bound CCR5 directly, without prior interaction with CD4. Thus, a major function of CD4 binding in the entry of primary HIV-1 isolates can be bypassed by changes in the gp120 V1-V2 elements, which allow the envelope glycoproteins to assume a conformation competent for CCR5 binding.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

15.
Entry of human immunodeficiency virus type 1 (HIV-1) and HIV-2 requires interactions between the envelope glycoprotein (Env) on the virus and CD4 and a chemokine receptor, either CCR5 or CXCR4, on the cell surface. The V3 loop of the HIV gp120 glycoprotein plays a critical role in this process, determining tropism for CCR5- or CXCR4-expressing cells, but details of how V3 interacts with these receptors have not been defined. Using an iterative process of deletion mutagenesis and in vitro adaptation of infectious viruses, variants of HIV-2 were derived that could replicate without V3, either with or without a deletion of the V1/V2 variable loops. The generation of these functional but markedly minimized Envs required adaptive changes on the gp120 core and gp41 transmembrane glycoprotein. V3-deleted Envs exhibited tropism for both CCR5- and CXCR4-expressing cells, suggesting that domains on the gp120 core were mediating interactions with determinants shared by both coreceptors. Remarkably, HIV-2 Envs with V3 deletions became resistant to small-molecule inhibitors of CCR5 and CXCR4, suggesting that these drugs inhibit wild-type viruses by disrupting a specific V3 interaction with the coreceptor. This study represents a proof of concept that HIV Envs lacking V3 alone or in combination with V1/V2 that retain functional domains required for viral entry can be derived. Such minimized Envs may be useful in understanding Env function, screening for new inhibitors of gp120 core interactions with chemokine receptors, and designing novel immunogens for vaccines.  相似文献   

16.
We previously reported that monoclonal antibodies to protein-disulfide isomerase (PDI) and other membrane-impermeant PDI inhibitors prevented HIV-1 infection. PDI is present at the surface of HIV-1 target cells and reduces disulfide bonds in a model peptide attached to the cell membrane. Here we show that soluble PDI cleaves disulfide bonds in recombinant envelope glycoprotein gp120 and that gp120 bound to the surface receptor CD4 undergoes a disulfide reduction that is prevented by PDI inhibitors. Concentrations of inhibitors that prevent this reduction and inhibit the cleavage of surface-bound disulfide conjugate prevent infection at the level of HIV-1 entry. The entry of HIV-1 strains differing in their coreceptor specificities is similarly inhibited, and so is the reduction of gp120 bound to CD4 of coreceptor-negative cells. PDI inhibitors also prevent HIV envelope-mediated cell-cell fusion but have no effect on the entry of HIV-1 pseudo-typed with murine leukemia virus envelope. Importantly, PDI coprecipitates with both soluble and cellular CD4. We propose that a PDI.CD4 association at the cell surface enables PDI to reach CD4-bound virus and to reduce disulfide bonds present in the domain of gp120 that binds to CD4. Conformational changes resulting from the opening of gp120-disulfide loops may drive the processes of virus-cell and cell-cell fusion. The biochemical events described identify new potential targets for anti-HIV agents.  相似文献   

17.
Human immunodeficiency virus (HIV) Env-induced fusion is highly temperature dependent. When effector and target cells were coincubated at 37 degrees C, there was a kinetic delay before fusion commenced. When effector and target cells were coincubated for varied times at 23 degrees C, a temperature that does not permit fusion, a temperature-arrested stage was created. Raising temperature to 37 degrees C from the 23 degrees C intermediate eliminated the kinetic delay. Inhibitors (T22, AMD3100, and Sch-C) that block fusion by binding chemokine receptors were added after creating the intermediate so as to assess the extent of engagement between gp120 and chemokine receptors at that stage. For both CXCR4 and CCR5 as coreceptors, increasingly long times of coincubation at 23 degrees C reduced the efficacy of the coreceptor-binding inhibitors in blocking fusion. This implies that an increasing number of ternary Env/CD4/coreceptor complexes form over time at 23 degrees C. It also shows that ternary complex formation has a lower temperature threshold than the downstream steps that include Env folding into a six-helix bundle; this provides an experimental means to separate coreceptor binding by gp120 from the subsequent refolding of gp41 into a six-helix bundle structure. As the time of cell coincubation at 23 degrees C was prolonged, more cells quickly fused upon the raising of the temperature to 37 degrees C, and the increase quantitatively correlated with the greater percentage of fusion that was resistant to drugs. Therefore the pronounced kinetic delay in HIV Env-induced fusion is caused predominantly by the time needed for ternary complexes to form.  相似文献   

18.
HIV entry occurs by concerted conformational changes in the envelope protein complex on the surface of the virus. This complex is made up of a trimer of heterodimers of two subunits: surface subunit, gp120, and transmembrane subunit, gp41. Conformational changes in the envelope complex allow gp41 to mediate membrane fusion leading to exposure of two gp41 regions: N-heptad repeat (NHR) and C-heptad repeat (CHR). Peptides from the NHR or the CHR have been found to inhibit HIV entry. Herein we show that we can covalently inhibit HIV viral entry by permanently trapping the gp41 intermediate on the virus surface using a covalently reactive group on inhibitory peptides. This is evidence showing that vulnerable conformational intermediates exist transiently during HIV viral entry, and the details presented herein will facilitate development of envelope as a target for therapeutics and potential chemopreventive agents that could disable the virus before contact with the host cell.  相似文献   

19.
The human immunodeficiency virus envelope glycoprotein (Env) is composed of surface (gp120) and transmembrane (gp41) subunits, which are noncovalently associated on the viral surface. Human immunodeficiency virus Env mediates viral entry after undergoing a complex series of conformational changes induced by interaction with cellular CD4 and a chemokine coreceptor. These changes propagate from gp120 to gp41 via the gp120-gp41 interface, ultimately exposing gp41 and allowing it to form the trimer-of-hairpins structure that provides the driving force for membrane fusion. Key unresolved questions about the gp120-gp41 interface include the specific regions of gp41 and gp120 involved, the mechanism by which receptor and coreceptor-binding-induced conformational changes in gp120 are communicated to gp41, how trimer-of-hairpins formation is prevented in the prefusogenic gp120-gp41 complex, and, ultimately, the structure of the prefusion gp120-gp41 complex. Here, we develop a biochemical model system that mimics a key portion of the gp120-gp41 interface in the prefusogenic state. We find that a gp41 fragment containing the disulfide bond loop and C-peptide region binds primarily to the gp120 C5 region and that this interaction is incompatible with trimer-of-hairpins formation. Based on these data, we propose that in prefusogenic Env, gp120 sequesters the gp41 C-peptide region away from the N-trimer region, preventing trimer-of-hairpins formation until coreceptor binding disrupts this interface. This model system is a valuable tool for studying the gp120-gp41 complex, conformational changes induced by CD4 and coreceptor binding, and the mechanism of membrane fusion.  相似文献   

20.
Human immunodeficiency virus entry into target cells requires sequential interactions of the viral glycoprotein envelope gp120 with CD4 and chemokine receptors CCR5 or CXCR4. CD4 interaction with the chemokine receptor is suggested to play a critical role in this process but to what extent such a mechanism takes place at the surface of target cells remains elusive. To address this issue, we used a confocal microspectrofluorimetric approach to monitor fluorescence resonance energy transfer at the cell plasma membrane between enhanced blue and green fluorescent proteins fused to CD4 and CCR5 receptors. We developed an efficient fluorescence resonance energy transfer analysis from experiments carried out on individual cells, revealing that receptors constitutively interact at the plasma membrane. Binding of R5-tropic HIV gp120 stabilizes these associations thus highlighting that ternary complexes between CD4, gp120, and CCR5 occur before the fusion process starts. Furthermore, the ability of CD4 truncated mutants and CCR5 ligands to prevent association of CD4 with CCR5 reveals that this interaction notably engages extracellular parts of receptors. Finally, we provide evidence that this interaction takes place outside raft domains of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号