首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During the viral life cycle, an HIV protein, Gag, assembles at the host membrane, specifically at lipid raft regions, at very high concentrations leading to viral particle budding. Gag is post-translationally modified with an N-terminal myristate group which is thought to target Gag to lipid rafts thus aiding in assembly. Here we have analyzed the membrane binding of myristoylated HIV-1 Gag and a non-myristoylated form of HIV-1 Gag to various membrane models. After assessing the extent of myristoylation by HPLC and radiometric assays, we compared membrane binding using fluorescence methods. We found that myristoylated Gag shows a greater than twofold increase in binding affinity to model rafts. A structural model to explain these results is presented.  相似文献   

2.
Role of HIV-1 Gag domains in viral assembly   总被引:13,自引:0,他引:13  
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.  相似文献   

3.
研究了重组痘苗病毒表达的HIV-1核心蛋白(Gag)p17-p24蛋白的些生物学及免疫学特点。间接免疫荧光、Dot 及LISA及Western blot结果表明,构建的两株重组病毒分别表达了HIV-1Gap p24及p17-p24融合蛋白。电镜观察证实,Gag p24及p17-24重组蛋白均可形成病毒样粒子。重组病毒可诱导小鼠产生抗HIV-1Gap p24抗体。重组病毒感染BHK21细胞后,可见由  相似文献   

4.
《Cell reports》2020,30(12):4065-4081.e4
  1. Download : Download high-res image (245KB)
  2. Download : Download full-size image
  相似文献   

5.
Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically dependent on the spacer p2, located between the capsid and the nucleocapsid proteins. P2 contributes also, in association with NCp7, to specific recognition of the HIV-1 packaging signal resulting in viral genome encapsidation. There is no structural information about the 20 last amino acids of the C-terminal part of capsid (CA[CTD]) and p2, in the molecular mechanism of Gag assembly. In this study the structure of a peptide encompassing the 14 residues of p2 with the upstream 21 residues and the downstream 13 residues was determined by (1)H NMR in 30% trifluoroethanol (TFE). The main structural motif is a well-defined amphipathic alpha-helix including p2, the seven last residues of the CA(CTD), and the two first residues of NCp7. Peptides containing the p2 domain have a strong tendency to aggregate in solution, as shown by gel filtration analyses in pure H(2)O. To take into account the aggregation phenomena, models of dimer and trimer formed through hydrophobic or hydrophilic interfaces were constructed by molecular dynamic simulations. Gel shift experiments demonstrate that the presence of at least p2 and the 13 first residues of NCp7 is required for RNA binding. A computer-generated model of the Gag polyprotein segment (282-434)Gag interacting with the packaging element SL3 is proposed, illustrating the importance of p2 and NCp7 in genomic encapsidation.  相似文献   

6.
Retroviral Gag proteins are membrane-bound polyproteins that are necessary and sufficient for virus-like particle (VLP) formation. It is not known how Gag traffics through the cell or how the site of particle production is determined. Here we use two techniques, biarsenical/tetracysteine (TC) labeling and release from a cycloheximide block, to follow the trafficking of newly synthesized HIV-1 Gag. Gag first appears diffusely distributed in the cytosol, accumulates in perinuclear clusters, passes transiently through a multivesicular body (MVB)-like compartment, and then travels to the plasma membrane (PM). Sequential passage of Gag through these temporal intermediates was confirmed by live cell imaging. Induction of a transient rise in cytoplasmic calcium increased the amounts of Gag, Gag assembly intermediates and VLPs in MVBs, and resulted in a dramatic increase in VLP release. These results define an intracellular trafficking pathway for HIV-1 Gag that uses perinuclear compartments and the MVB as trafficking intermediates. We propose that the regulation of Gag association with MVB-like compartments regulates the site of HIV-1 budding and particle formation.  相似文献   

7.
旨在通过构建Gag的抗原多表位融合基因及在原核系统的高表达,为HIV诊断及可能的疫苗制备提供试验基础。选定HIV-1 Gag基因中3个片段包含较多抗原表位的区域,设计带有酶切位点的引物,用PCR的方法从HIV-1HXB2全基因扩增编码这3个片段的基因序列,通过质粒提取、酶切、测序方法鉴定基因片段的正确性,SDS-PAGE和Western blotting测定融合蛋白的表达,并免疫动物制备相应抗体。结果显示,构建的HIV-1 Gag多表位嵌合基因的原核表达质粒,酶切和测序结果表明基因序列正确,基因全长576bp。在大肠杆菌BL21(DE3)中高效表达的重组蛋白分子量为27kD,以包涵体的形式存在。纯化目的蛋白免疫家兔,制备多克隆抗体IgG。ELISA和免疫荧光方法检测显示制备的多克隆抗体能具有特异性反应。成功构建和高表达了HIV-1 Gag多表位融合蛋白,纯化蛋白制备的抗体与HIV-1Gag有特异性结合。为进一步研究HIV-1奠定了试验基础。  相似文献   

8.
The mitochondrion is an organelle that regulates various cellular functions including the production of energy and programmed cell death. Aberrant mitochondrial function is often concomitant with various cytopathies and medical disorders. The mitochondrial membrane plays a key role in the induction of cellular apoptosis, and its destabilization, as triggered by both intracellular and extracellular stimuli, results in the release of proapoptotic factors into the cytosol. Not surprisingly, proteins from the human immunodeficiency virus type 1 (HIV) have been implicated in exploiting this organelle to promote the targeted depletion of key immune cells, which assists in viral evasion of the immune system and contributes to the characteristic global immunodeficiency observed during progression of disease. Here we review the mechanisms by which HIV affects the mitochondrion, and suggest that various viral-associated genes may directly regulate apoptotic cell death.  相似文献   

9.
为探讨诱导温度对于HIV-1 Gag在大肠杆菌中表达产物状态以及尿素浓度对蛋白纯化效果的影响, 将30oC和37oC诱导表达的包涵体分别溶于不同浓度的尿素, 比较溶解性的差异, 并比较复性的不同。将30oC诱导的目的蛋白分别用2 mol/L和8 mol/L尿素溶解后做层析分离, 比较两者的分离效果。结果发现, 与37oC相比, 30oC诱导表达的蛋白能有效溶于低浓度尿素, 并且更容易复性。与8 mol/L尿素溶解相比, 30oC诱导的包涵体用2 mol/L尿素溶解后通过凝胶过滤和离子交换层析纯化能得到更好的分离效果。这提示低温诱导的Gag包涵体中可能含有更多类似天然态构象的蛋白, 而低浓度尿素有利于保持包涵体中蛋白的天然态构象。从而为包涵体蛋白的诱导表达和分离纯化提供了参考。  相似文献   

10.
In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag–gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5′-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein–protein interactions.  相似文献   

11.
The functionally exchangeable L domains of HIV-1 and Rous sarcoma virus (RSV) Gag bind Tsg101 and Nedd4, respectively. Tsg101 and Nedd4 function in endocytic trafficking, and studies show that expression of Tsg101 or Nedd4 fragments interfere with release of HIV-1 or RSV Gag, respectively, as virus-like particles (VLPs). To determine whether functional exchangeability reflects use of the same trafficking pathway, we tested the effect on RSV Gag release of co-expression with mutated forms of Vps4, Nedd4 and Tsg101. A dominant-negative mutant of Vps4A, an AAA ATPase required for utilization of endosomal sorting proteins that was shown previously to interfere with HIV-1 budding, also inhibited RSV Gag release, indicating that RSV uses the endocytic trafficking machinery, as does HIV. Nedd4 and Tsg101 interacted in the presence or absence of Gag and, through its binding of Nedd4, RSV Gag interacted with Tsg101. Deletion of the N-terminal region of Tsg101 or the HECT domain of Nedd4 did not prevent interaction; however, three-dimensional spatial imaging suggested that the interaction of RSV Gag with full-length Tsg101 and N-terminally truncated Tsg101 was not the same. Co-expression of RSV Gag with the Tsg101 C-terminal fragment interfered with VLP release minimally; however, a significant fraction of the released VLPs was tethered to each other. The results suggest that, while Tsg101 is not required for RSV VLP release, alterations in the protein interfere with VLP budding/fission events. We conclude that RSV and HIV-1 Gag direct particle release through independent ESCRT-mediated pathways that are linked through Tsg101-Nedd4 interaction.  相似文献   

12.
Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates of cleavage changed dramatically compared with that of the cognate sites in the natural context reported previously. The rate of processing was affected the most for three sites: CA/spacer peptide 1 (SP1) (≈10-fold increase), SP1/nucleocapsid (NC) (≈10-30-fold decrease), and SP2/p6 (≈30-fold decrease). One of two multidrug-resistant (MDR) PR variants altered the pattern of processing rates significantly. Cleavage sites within the Pro-Pol region were cleaved in a context-independent manner, suggesting for these sites that the sequence itself was the determinant of rate. In addition, a chimera consisting of SP1/NC P4-P1 and MA/CA P1'-P4' residues (ATIM↓PIVQ) abolished processing by wild type and MDR proteases, and the reciprocal chimera consisting of MA/CA P4-P1 and SP1/NC P1'-4' (SQNY↓IQKG) was cleaved only by one of the MDR proteases. These results suggest that complex substrate interactions both beyond the active site of the enzyme and across the scissile bond contribute to defining the rate of processing by the HIV-1 PR.  相似文献   

13.
The cytidine deaminase hAPOBEC3G is an antiviral human factor that counteracts the replication of HIV-1 in absence of the Vif protein. hAPOBEC3G is packaged into virus particles and lethally hypermutates HIV-1. In this work, we examine the mechanisms governing hAPOBEC3G packaging. By GST pull-down and co-immunoprecipitation assays, we show that hAPOBEC3G binds to HIV-1 Pr55 Gag and its NC domain and to the RT and IN domains contained in Pr160 Gag-Pol. We demonstrate that the expression of HIV-1 Gag is sufficient to induce the packaging of hAPOBEC3G into Gag particles. Gag-Pol polypeptides containing RT and IN domains, as well as HIV-1 genomic RNA, seem not to be necessary for hAPOBEC3G packaging. Lastly, we show that hAPOBEC3G and its murine ortholog are packaged into HIV-1 and MLV Gag particles. We conclude that the Gag polypeptides from distant retroviruses have conserved domains allowing the packaging of the host antiviral factor APOBEC3G.  相似文献   

14.
15.
The oligomerization of HIV-1 Gag and Gag-Pol proteins, which are assembled at the plasma membrane, leads to viral budding. The budding generally places the viral components under non-reducing conditions. Here the effects of non-reducing conditions on Gag structures and viral RNA protection were examined. Using different reducing conditions and SDS-PAGE, it was shown that oligomerized Gag possesses intermolecular covalent bonds under non-reducing conditions. In addition, it was demonstrated that the mature viral core contains a large amount of covalent bonded Gag multimers, as does the immature core. Viral genomic RNA becomes sensitive to ribonuclease in reducing conditions. These results suggest that, under non-reducing conditions, covalent bonded Gag multimers are formed within the viral particles and play a role in protection of the viral genome.  相似文献   

16.
Bouamr F  Scarlata S  Carter C 《Biochemistry》2003,42(21):6408-6417
Assembly of the human immunodeficiency virus type 1 (HIV-1) first occurs on the plasma membrane of host cells where binding is driven by strong electrostatic interactions between the N-terminal matrix (MA) domain of the structural precursor polyprotein, Gag, and the membrane. MA is also myristylated, but the exact role this modification plays is not clear. In this study, we compared the protein oligomerization and membrane binding properties of Myr(+) and Myr(-) Gag(MA) expressed in COS-1 cells. Sedimentation studies in solution showed that both the myristylated Gag precursor and the mature MA product were detected in larger complexes than their unmyristylated counterparts, and the myristylated MA protein bound liposomes with approximately 3-fold greater affinity than unmyristylated MA. Aromatic residues near the N-terminal region of the MA protein were more accessible to chymotrypsin in the unmyristylated form and, consistent with this, an epitope in the N-terminal region was more exposed. Moreover, the cyclophilin binding site in the CA domain downstream of MA was more accessible in the unmyristylated Gag protein, while the Tsg101 binding site in the C-terminal region was equally available in the unmyristylated and myristylated Gag proteins. Taken together, our results suggest that myristylation promotes assembly by inducing conformational changes and facilitating MA multimerization. This observation offers a novel role for myristylation.  相似文献   

17.
HIV-1 Gag and Gag-Pol are responsible for viral assembly and maturation and represent a major paradigm for enveloped virus assembly. Numerous intracellular Gag-containing complexes (GCCs) have been identified in cellular lysates using sucrose gradient ultracentrifugation. While these complexes are universally present in Gag-expressing cells, their roles in virus assembly are not well understood. Here we demonstrate that most GCC species are predominantly comprised of monomeric or dimeric Gag molecules bound to ribosomal complexes, and as such, are not on-pathway intermediates in HIV assembly. Rather, these GCCs represent a population of Gag that is not yet functionally committed for incorporation into a viable virion precursor. We hypothesize that these complexes act as a reservoir of monomeric Gag that can incorporate into assembling viruses, and serve to mitigate non-specific intracellular Gag oligomerization. We have identified a subset of large GCC complexes, comprising more than 20 Gag molecules, that may be equivalent to membrane-associated puncta previously shown to be bona fide assembling-virus intermediates. This work provides a clear rationale for the existence of diverse GCCs, and serves as the foundation for characterizing on-pathway intermediates early in virus assembly.  相似文献   

18.
Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8–43 (MA-(8–43)). Here, we present the NMR structure of CaM bound to MA-(8–43). Our data revealed that MA-(8–43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8–43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8–43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication.  相似文献   

19.
In the Rous sarcoma virus (RSV) Gag protein, the 25 amino-acid residues of the p10 domain immediately upstream of the CA domain are essential for immature particle formation. We performed systematic mutagenesis on this region and found excellent correlation between the amino-acid side chains required for in vitro assembly and those that participate in the p10-CA dimer interface in a previously described crystal structure. We introduced exogenous cysteine residues that were predicted to form disulphide bonds across the dimer interface. Upon oxidation of immature particles, a disulphide-linked Gag hexamer was formed, implying that p10 participates in and stabilizes the immature Gag hexamer. This is the first example of a critical interaction between two different Gag domains. Molecular modeling of the RSV immature hexamer indicates that the N-terminal domains of CA must expand relative to the murine leukaemia virus mature hexamer to accommodate the p10 contact; this expansion is strikingly similar to recent cryotomography results for immature human immunodeficiency virus particles.  相似文献   

20.

Background

Human Immunodeficiency Virus Type 1 (HIV-1) viral load testing at regular intervals is an integral component of disease management in Acquired Immunodeficiency Syndrome (AIDS) patients. The need in countries like India is therefore an assay that is not only economical but efficient and highly specific for HIV-1 sub type C virus. This study reports a SYBR Green-based HIV-1 real time PCR assay for viral load testing and is designed for enhanced specificity towards HIV-1 sub type C viruses prevalent in India.

Results

Linear regression of the observed and reference concentration of standards used in this study generated a correlation coefficient of 0.998 (p < 0.001). Lower limit of detection of the test protocol was 50 copies/ml of plasma. The assay demonstrated 100% specificity when tested with negative control sera. The Spearman coefficient of the reported assay with an US-FDA approved, Taqman probe-based commercial kit was found to be 0.997. No significant difference in viral load was detected when the SYBR Green based assay was used to test infected plasma stored at -20°C and room temperature for 7 days respectively (Wilcoxon signed rank test, p = 0.105). In a comparative study on 90 pretested HIV-1 positive samples with viral loads ranging from 5,000–25,000 HIV-1 RNA copies/ml and between two commercial assays it was found that the later failed to amplify in 13.33% and 10% samples respectively while in 7.77% and 4.44% samples the copy number values were reduced by >0.5 log value, a figure that is considered clinically significant by physicians.

Conclusion

The HIV-1 viral load assay reported in this study was found to be robust, reliable, economical and effective in resource limited settings such as those existing in India. PCR probes specially designed from HIV-1 Subtype C-specific nucleotide sequences originating from India imparted specificity towards such isolates and demonstrated superior results when compared to two similar commercial assays widely used in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号