首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

2.

Background

Retinal dehydrogenases (RALDHs) catalyze the dehydrogenation of retinal into retinoic acids (RAs), which are required for embryogenesis and tissue differentiation. This study sought to determine the detailed kinetic properties of 2 mouse RALDHs, namely RALDH3 and 4, for retinal isomer substrates, to better define their specificities in RA isomer synthesis.

Methods

RALDH3 and 4 were expressed in Escherichia coli as His-tagged proteins and affinity-purified. Enzyme kinetics were performed with retinal isomer substrates. The enzymatic products were analyzed by high pressure liquid chromatography.

Results

RALDH3 oxidized all-trans retinal with high catalytic efficiency (Vmax/Km = 77.9) but did not show activity for either 9-cis or 13-cis retinal substrates. On the other hand, RALDH4 was inactive for all-trans retinal substrate, exhibited high activity for 9-cis retinal oxidation (Vmax/Km = 27.4), and oxidized 13-cis retinal with lower catalytic efficiency (Vmax/Km = 8.24). β-ionone, a potent inhibitor of RALDH4 activity, suppressed 9-cis and 13-cis retinal oxidation competitively with inhibition constants of 0.60 and 0.32, respectively, but had no effect on RALDH3 activity. The divalent cation MgCl2 activated 13-cis retinal oxidation by RALDH4 by 3-fold, did not significantly influence 9-cis retinal oxidation, and slightly activated RALDH3 activity.

Conclusions

These data extend the kinetic characterization of RALDH3 and 4, providing their specificities for retinal isomer substrates.

General significance

The kinetic characterization of RALDHs should give useful information in determining amino acid residues that are involved in the specificity for retinal isomers and on the role of these enzymes in the synthesis of RAs in specific tissues.  相似文献   

3.
FTIR Emission Spectra of Bacteriorhodopsin in a Vibrational Excited-State   总被引:1,自引:0,他引:1  
Vibrational IR-emission spectra of bacteriorhodopsin (bR) were recorded under continuous illumination with visible light at room temperature. They contain selective information about the chromophore, Schiff base, and opsin. The spectral bands were identified by comparing the data with resonance Raman and IR absorption data. The IR-emission spectra were shown to contain a set of bands characteristic for both all-trans (bR568) and 13-cis conformations (K610-like intermediate) simultaneously. Variation of spectral composition and the intensity of visible light illumination influenced the spectral traces and intensity distribution between them. Greater intensity of deformational vibrations suggests distorted retinal structure in the vibrationally excited ground electronic state. The origin of the emitting species of bR is discussed.  相似文献   

4.
We discuss to what extent the vibrational spectra of bacteriorhodopsin that have been observed and assigned by Smith et al. (1, 2) by means of resonance Raman and by Gerwert and Siebert (EMBO (Eur. Mol. Biol. Organ.) J. In press) by means of infrared absorption experiments are in agreement with a photo-cycle of bacteriorhodopsin that involves the sequence BR, IO(all-trans) → K(13,14-cis) → L(13,14-cis) → M(13-cis) → N(13-cis) → O(all-trans). Our discussion is based on a quantumchemical modified neglect of diatomic overlap [MNDO] calculation of the vibrational spectra of the relevant isomers of the protonated retinal Schiff base. In particular, we investigated in these calculations the effects of different charge environments on the frequencies of the relevant C-C single bond stretching vibrations of these isomers.  相似文献   

5.
The reported rates of thermal 13-cis to all-trans isomerization of the protonated Schiff base of retinal (PSBR) in solution and in bacteriorhodopsin (BR) are shown to be correlated with the red shift in the absorption maximum of the chromophore, though the linear fit is different for BR and for a model PSBR in solution. Because the red shift in the absorption has been previously shown to be correlated with π-electron delocalization in the chromophore, this suggests that the thermal isomerization rate is largely regulated by the amount of double bond character in the chromophore. Because the linear fit of isomerization rates with absorption maxima is different for BR and the model PSBR, specific interactions of the protein with the chromophore must also be a factor in determining thermal isomerization rates in BR. A model of the later steps in the photocycle of BR is presented in which the 13-cis to all-trans thermal isomerization occurs during the O intermediate.  相似文献   

6.
Bacteriorhodopsin monomer dispersed in a solution of the detergent L-1690 could maintain the specific interaction between retinal and protein in the pH range 9.0-0.0 at 25°C. λmax of the absorbance spectrum was 550 nm at pH 9.0, 556 nm at pH 5.5, 609 nm at pH 2.1 and 570 nm at pH 0.0. Increasing the NaCl concentration in the solution promoted formation of the 609 nm product at pH 5.0-3.0 and also its transition to the 570 nm product at pH 2.5-1.0. Retinal isomer analysis gave a ratio of 13-cis- to all-trans-retinal of 53 : 47 at pH 5.5. When the pH of the solution was reduced, the relative content of all-trans-retinal increased and the ratio of 13-cis- to all-trans-retinal was 14 : 86 at pH 0.0. Illumination of the solution at pH 7.2 yielded a product containing 9-cis-retinal or 9-cis, 13-cis-retinal, which may be due to a reaction other than the photoreaction cycle.  相似文献   

7.
The resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C as well as those of the cis-trans isomers of β-carotene (all-trans, 9-cis, 13-cis, 15-cis and 9-cis, 13-cis- (or 9-cis, 13′-cis)) have been recorded at liquid N2 temperature by use of the 457.9, 488.0 and 514.5 nm excitation lines. Comparison of the spectra indicated that the carotenoid in the reaction center takes the 15-cis configuration.  相似文献   

8.
细菌视紫红质的质子传输机理   总被引:2,自引:0,他引:2  
细菌视紫红质(bR)是嗜盐菌紫膜中的唯一蛋白质成分, 具有质子泵、电荷分离和光致变色功能. bR分子中的发色团视黄醛通过质子化席夫碱以共价键与Lys216相连. bR分子受可见光照射后, 视黄醛发生从全-反到13-顺式构型的异构化, 导致席夫碱的去质子化,继之以可极化基团位置的改变. 力场的变化引起包括蛋白质三级结构在内的诸多变化, 这些变化促进并保证了质子从细胞质侧向细胞外侧的定向传输.  相似文献   

9.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pKa of the Schiff base (the primary proton donor) and the low pKa of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

10.
All-trans-retinoic acid (all-trans-RA) and 13-cis-retinoic acid (13-cis-RA), due to their effects on cell differentiation, proliferation and angiogenesis, improved treatment results in some malignancies. Pharmacokinetic studies of all-trans-RA and 13-cis-RA along with monitoring of retinoic acid metabolites may help to optimize retinoic acid therapy and to develop new effective strategies for the use of retinoic acids in cancer treatment. Therefore, we developed a HPLC method for the simultaneous determination in human plasma of the physiologically important retinoic acid isomers, all-trans-, 13-cis- and 9-cis-retinoic acid, their 4-oxo metabolites, 13-cis-4-oxoretinoic acid (13-cis-4-oxo-RA) and all-trans-4-oxoretinoic acid (all-trans-4-oxo-RA), and vitamin A (all-trans-retinol). Analysis performed on a silica gel column with UV detection at 350 nm using a binary multistep gradient composed on n-hexane, 2-propanolol and glacial acetic acid. For liquid-liquid extraction a mixture of n-hexane, dichloromethane and 2-propanolol was used. The limits of detection were 0.5 ng/ml for retinoic acids and 10 ng/ml for all-trans-retinol. The method showed good reproducibility for all components (within-day C.V.: 3.02–11.70%; day-to-day C.V.: 0.01–11.34%. Furthermore, 9-cis-4-oxoretinoic acid (9-cis-4-oxo-RA) is separated from all-trans-4-oxo-RA and 13-cis-4-oxo-RA. In case of clinical use of 9-cis-retinoic acid (9-cis-RA) the pharmacokinetics and metabolism of this retinoic acid isomer can also be examined.  相似文献   

11.
12.
Computational studies of retinal protonated Schiff base (PSB) isomers show that a twisted curl-shaped conformation of the retinyl chain is a new low-lying minimum on the ground-state potential energy surface. The curl-shaped isomer has a twisted structure in the vicinity of the C11=C12 double bond where the 11-cis retinal PSB isomerizes in the rhodopsin photoreaction. The twisted configuration is a trapped structure between the 11-cis and all-trans isomers. Rotation around the C10–C11 single bond towards the 11-cis structure is prevented by steric interactions of the two methyl groups on the retinyl chain and by the torsion barrier of the C10–C11 bond in the other direction. Calculations of spectroscopic properties of the 11-cis, all-trans, and curl-shaped isomers provide useful data for future identification of the new retinal PSB isomer. Circular dichroism (CD) spectroscopy might be used to distinguish between the retinal PSB isomers. The potential energy surface for the orientation of the β-ionone ring of the 11-cis retinal PSB reveals three minima depending on the torsion angle of the β-ionone ring. Two of the minima correspond to 6-s-cis configurations and one has the β-ionone ring in 6-s-trans position. The calculated CD spectra for the two 6-s-cis configurations differ significantly indicating that the sign of the β-ionone ring torsion angle could be determined using CD spectroscopy. Calculations of the CD spectra suggest that a flip of the β-ionone ring might occur during the first 1 ps of the photoreaction. Rhodopsin has a negative torsion angle for the β-ionone ring, whereas the change in the sign of the first peak in the experimental CD spectrum for bathorhodopsin could suggest that it has a positive torsion angle for the β-ionone ring. Calculated nuclear magnetic resonance (NMR) shielding constants and infrared (IR) spectra are also reported for the retinal PSB isomers. Figure The figure shows the optimized molecular structure of the curl-shaped retinal isomer. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
A new method of high-performance liquid chromatography (HPLC) analysis to quantify isomers of retinol, retinal and retinoic acid simultaneously was established. The HPLC system consisted of a silica gel absorption column and a linear gradient with two kinds of solvents containing n-Hexane, 2-propanol, and glacial acetic acid in different ratios. It separated six retinoic acid isomers (13-cis, 9-cis, all-trans, all-trans-4-oxo, 9-cis-4-oxo, 13-cis-4-oxo), three retinal isomers (13-cis-, 9-cis-, and all-trans) and two retinol isomers (13-cis- and all-trans). Human serum samples were subjected to this HPLC analysis and at least, all-trans retinol, 13-cis retinol, and all-trans retinoic acid were detectable. This HPLC system is useful for evaluating retinoic acid formation from retinol via a two-step oxidation pathway. Moreover, it could be applied to monitoring the concentrations of various retinoids, including all-trans retinoic acid in human sera.  相似文献   

14.
The effects of the 9-cis and 13-cis isomers of zeaxanthin on the molecular organization and dynamics of dimyristoylphosphatidylcholine (DMPC) membranes were investigated using conventional and saturation recovery EPR observations of the 1-palmitoyl-2-(14-doxylstearoyl)phosphatidylcholine (14-PC) spin label. The results were compared with the effects caused by the all-trans isomer of zeaxanthin. Effects on membrane fluidity, order, hydrophobicity, and the oxygen transport parameter were monitored at the center of the fluid phase DMPC membrane. The local diffusion-solubility product of oxygen molecules (oxygen transport parameter) in the membrane center, studied by saturation-recovery EPR, decreased by 47% and 27% by including 10 mol% 13-cis and 9-cis zeaxanthin, respectively; whereas, incorporation of all-trans zeaxanthin decreased this parameter by only 11%. At a zeaxanthin-to-DMPC mole ratio of 1:9, all investigated isomers decreased the membrane fluidity and increased the alkyl chain order in the membrane center. They also increased the hydrophobicity of the membrane interior. The effects of these isomers of zeaxanthin on the membrane properties mentioned above increase as: all-trans < 9-cis ≤ 13-cis. Obtained results suggest that the investigated cis-isomers of zeaxanthin, similar to the all-trans isomer, are located in the membrane interior, adopting transmembrane orientation with the polar terminal hydroxyl groups located in the opposite leaflets of the bilayer. However, the existence of the second pool of cis-zeaxanthin molecules located in the one leaflet and anchored by the terminal hydroxyl groups in the same polar headgroup region cannot be completely ruled out.  相似文献   

15.
The proton pumping cycle of bacteriorhodopsin (bR) is initiated when the retinal chromophore with the 13-trans configuration is photo-isomerized into the 13-cis configuration. To understand the recovery processes of the initial retinal configuration that occur in the late stage of the photocycle, we have performed a comprehensive analysis of absorption kinetics data collected at various pH levels and at different salt concentrations. The result of analysis revealed the following features of the late stages of the trans photocycle. i) Two substates occur in the O intermediate. ii) The visible absorption band of the first substate (O1) appears at a much shorter wavelength than that of the late substate (O2). iii) O1 is in rapid equilibrium with the preceding state (N), but O1 becomes less stable than N when an ionizable residue (X1) with a pKa value of 6.5 (in 2 M KCl) is deprotonated. iv) At a low pH and at a low salt concentration, the decay time constant of O2 is longer than those of the preceding states, but the relationship between these time constants is altered when the medium pH or the salt concentration is increased. On the basis of the present observations and previous studies on the structure of the chromophore in O, we suspect that the retinal chromophore in O1 takes on a distorted 13-cis configuration and the O1-to-O2 transition is accompanied by cis-to-trans isomerization about C13C14 bond.  相似文献   

16.
The light-induced isomerization of the retinal from 11-cis to all-trans triggers changes in the conformation of visual rhodopsins that lead to the formation of the activated state, which is ready to interact with the G protein. To begin to understand how changes in the structure and dynamics of the retinal are transmitted to the protein, we performed molecular dynamics simulations of squid rhodopsin with 11-cis and all-trans retinal, and with two different force fields for describing the retinal molecule. The results indicate that structural rearrangements in the binding pocket, albeit small, propagate toward the cytoplasmic side of the protein, and affect the dynamics of internal water molecules. The sensitivity of the active-site interactions on the retinal force-field parameters highlights the coupling between the retinal molecule and its immediate protein environment.  相似文献   

17.

Background

Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid × receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure–function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids.

Methods

We have determined apparent dissociation constants, K′d, through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions.

Results

CRBPI and CRBPII, respectively, bind 9-cis-retinol (K′d, 11 nM and 68 nM) and 9-cis-retinal (K′d, 8 nM and 5 nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII.

Conclusions

CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal.

General significance

These data provide further insight into structure–binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins.  相似文献   

18.
《BBA》1987,893(1):60-68
The electrical activity of bacteriorhodopsin (BR) containing the 13-substituted retinal analogues 13-demethyl and 13-methoxy as well as the naturally occurring retinal carrying a methyl group at C13 is compared. White membrane patches reconstituted with the different retinals are attached to a black lipid membrane, and the dependency of the photocurrent on light intensity is measured. This allows a comparison of the overall photocycle time and the number of protons transported per cycle for the various preparations. From previous work (Gärtner, W., Towner, P., Hopf, H. and Oesterhelt, D. (1983) Biochem. 22, 2637–2644, see also Gärtner, W. and Oesterhelt, D., unpublished data) the equilibrium isomeric distribution (all-trans and 13-cis) of the different retinals in the binding site is known. Taking into account that only all-trans retinal BR contributes to the pumping activity (Fahr, A. and Bamberg, E. (1982) FEBS Lett. 140, 251–253), it is shown, that the cycle time for the modified BRs is moderately changed, whereas the number of protons transported per cycle and transporting all-trans BR molecule is not affected by the substituent. It is concluded, that substituting the methyl group at position 13 of the retinal molecule by a hydrogen atom or a methoxy group only slightly affects the pumping activity of the trans-photocycle, but rather controls the biological function of BR via the equilibrium isomeric distribution of the retinal molecule in the binding site.  相似文献   

19.
Liver alcohol dehydrogenase (E.C.1.1.1.1) is an NAD+/NADH dependent enzyme with a broad substrate specificity being active on an assortment of primary and secondary alcohols. It catalyzes the reversible oxidation of a wide variety of alcohols to the corresponding aldehydes and ketones as well as the oxidation of certain aldehydes to their related carboxylic acids. Although the bioinorganic and bioorganic aspects of the enzymatic mechanism, as well as the structures of various ternary complexes, have been extensively studied, the kinetic significance of certain intermediates has not been fully evaluated. Nevertheless, the availability of computer-assisted programs for kinetic simulation and molecular modeling make it possible to describe the biochemical mechanism more completely. Although the true physiological substrates of this zinc metalloenzyme are unknown, alcohol dehydrogenase effectively catalyzes not only the interconversion of all-trans-retinol and all-trans-retinal but also the oxidation of all-trans-retinal to the corresponding retinoic acid. Retinal and related vitamin A derivatives play fundamental roles in many physiological processes, most notably the vision process. Furthermore, retinoic acid is used in dermatology as well as in the prevention and treatment of different types of cancer. The enzyme-NAD+-retinol complex has an apparent pKa value of 7.2 and loses a proton rapidly. Proton inventory modeling suggests that the transition state for the hydride transfer step has a partial negative charge on the oxygen of retinoxide. Spectral evidence for an intermediate such as E-NAD+-retinoxide was obtained with enzyme that has cobalt(II) substituted for the active site zinc(II). Biophysical considerations of water in these biological processes coupled with the inverse solvent isotope effect lead to the conclusion that the zinc-bound alkoxide makes a strong hydrogen bond with the hydroxyl group of Ser48 and is thus activated for hydride transfer. Moderate pressure accelerates enzyme action indicative of a negative volume of activation. The data with retinol is discussed in terms of enzyme stability, mechanism, adaptation to extreme conditions, as well as water affinities of substrates and inhibitors. Our data concern all-trans, 9-cis, 11-cis, and 13-cis retinols as well as the corresponding retinals. In all cases the enzyme utilizes an approximately ordered mechanism for retinol–retinal interconversion and for retinal–retinoic acid transformation.  相似文献   

20.
The role of 9-cis-β-carotene (9-cis-β-C) as a potential precursor of 9-cis-retinoic acid (9-cis-RA) has been examined in human intestinal microcosa in vitro. By using HPLC, uv spectra, and chemical derivatization analysis, both 9-cis-RA and all-trans-retinoic acid (all-trans-RA) have been identified in the postnuclear fraction of human intestinal microcosa after incubation with 9-cis-β-C at 37°C. The biosynthesis of both 9-cis-RA and all-trans-RA from 9-cis-β-C was linear with increasing concentrations of 9-cis-β-C (2-30 μM) and was linear with respect to tissue protein concentration up to 0.75 mg/ml. Retinoic acid was not detected when a boiled incubation mixture was incubated in the presence of 9-cis-β-C. The rate of synthesis of 9-cis- and all-trans-RA from 4 μM 9-cis-β-C were 16 ± 1 and 18 ± 2 pmol/hr/mg of protein, respectively. However, when 2 μM all-trans-β-C was added to the 4 μM 9-cis-β-C, the rate of all-trans-RA synthesis was increased to 38 ± 6 pmol/hr/mg of protein, whereas the rate of 9-cis-RA synthesis remained the same. These results suggest that 9-cis-RA is produced directly from 9-cis-β-C. Furthermore, incubations of either 0.1 μM 9-cis- or all-trans-retinal under the same incubation conditions showed that 9-cis-RA could also arise through oxidative conversion of 9-cis-retinal. Although only 9-cis-RA was detected when 9-cis-RA was used as the substrate, the isomerization of the all-trans-RA to 9-cis-RA cannot be ruled out, since both all-trans-RA and trace amounts of 9-cis-RA were detected when all-trans-retinal was incubated as the substrate. These data indicate that 9-cis-β-C can be a source of 9-cis-RA in the human. This conversion may have a significance in the anticarcinogenic action of β-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号