首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(2):173-182
The first cell differentiation in the mammalian development separates the trophoblast and embryonic cell lineages, resulting in the formation of the trophectoderm (TE) and inner cell mass (ICM) in blastocysts. Although a lower level of global DNA methylation in the genome of the TE compared with ICM has been suggested, the dynamics of the DNA methylation profile during TE/ICM differentiation has not been elucidated. To address this issue, first we identified tissue-dependent and differentially methylated regions (T-DMRs) between trophoblast stem (TS) and embryonic stem (ES) cells. Most of these TS–ES T-DMRs were also methylated differentially between trophoblast and embryonic tissues of embryonic day (E) 6.5 mouse embryos. Furthermore, we found that the human genomic regions homologous to mouse TS–ES T-DMRs were methylated differentially between human placental tissues and ES cells. Collectively, we defined them as cell-lineage-based T-DMRs between trophoblast and embryonic cell lineages (T–E T-DMRs). Then, we examined TE and ICM cells isolated from mouse E3.5 blastocysts. Interestingly, all T-DMRs examined, including the Elf5, Pou5f1 and Nanog loci, were in the nearly unmethylated status in both TE and ICM and exhibited no differences. The present results suggest that the establishment of DNA methylation profiles specific to each cell lineage follows the first morphological specification. Together with previous reports on asymmetry of histone modifications between TE and ICM, the results of the current study imply that histone modifications function as landmarks for setting up cell-lineage-specific differential DNA methylation profiles.  相似文献   

2.
DNA methylation is an epigenetic mark on the mammalian genome. There are numerous tissue-dependent and differentially methylated regions (T-DMRs) in the unique sequences distributed throughout the genome. To determine the epigenetic changes during adipocyte differentiation, we investigated the sequential changes in DNA methylation status of 3T3-L1 cells at the growing, confluent, postconfluent and mature adipocyte cell stages. Treatment of 3T3-L1 cells with 5-aza-2′-deoxycytidine inhibited differentiation in a stage-dependent manner, supporting the idea that formation of accurate DNA methylation profile, consisting of methylated and unmethylated T-DMRs, may be involved in differentiation. Analysis by methylation-sensitive quantitative real-time PCR of the 65 known T-DMRs which contain NotI sites detected 8 methylations that changed during differentiation, and the changes in the patterns of these methylations were diverse, confirming that the differentiation process involves epigenetic alteration at the T-DMRs. Intriguingly, the dynamics of the methylation change vary depending on the T-DMRs and differentiation stages. Restriction landmark genomic scanning detected 32 novel T-DMRs, demonstrating that differentiation of 3T3-L1 cells involves genome-wide epigenetic changes by temporal methylation/demethylation, in addition to maintenance of a static methylated/demethylated state, and both depend on differentiation stage.  相似文献   

3.
4.
5.
CpG island methylation plays an important role in epigenetic gene control during mammalian development and is frequently altered in disease situations such as cancer. The majority of CpG islands is normally unmethylated, but a sizeable fraction is prone to become methylated in various cell types and pathological situations. The goal of this study is to show that a computational epigenetics approach can discriminate between CpG islands that are prone to methylation from those that remain unmethylated. We develop a bioinformatics scoring and prediction method on the basis of a set of 1,184 DNA attributes, which refer to sequence, repeats, predicted structure, CpG islands, genes, predicted binding sites, conservation, and single nucleotide polymorphisms. These attributes are scored on 132 CpG islands across the entire human Chromosome 21, whose methylation status was previously established for normal human lymphocytes. Our results show that three groups of DNA attributes, namely certain sequence patterns, specific DNA repeats, and a particular DNA structure, are each highly correlated with CpG island methylation (correlation coefficients of 0.64, 0.66, and 0.49, respectively). We predicted, and subsequently experimentally examined 12 CpG islands from human Chromosome 21 with unknown methylation patterns and found more than 90% of our predictions to be correct. In addition, we applied our prediction method to analyzing Human Epigenome Project methylation data on human Chromosome 6 and again observed high prediction accuracy. In summary, our results suggest that DNA composition of CpG islands (sequence, repeats, and structure) plays a significant role in predisposing CpG islands for DNA methylation. This finding may have a strong impact on our understanding of changes in CpG island methylation in development and disease.  相似文献   

6.
7.
Cohen NM  Kenigsberg E  Tanay A 《Cell》2011,145(5):773-786
Mammalian CpG islands are key epigenomic elements that were first characterized experimentally as genomic fractions with low levels of DNA methylation. Currently, CpG islands are defined based on their genomic sequences alone. Here, we develop evolutionary models to show that several distinct evolutionary processes generate and maintain CpG islands. One central evolutionary regime resulting in enriched CpG content is driven by low levels of DNA methylation and consequentially low rates of CpG deamination. Another major force forming CpG islands is biased gene conversion that stabilizes constitutively methylated CpG islands by balancing rapid deamination with CpG fixation. Importantly, evolutionary analysis and population genetics data suggest that selection for high CpG content is not?a significant factor contributing to conservation of CpGs in differentially methylated regions. The heterogeneous, but not selective, origins of CpG islands have direct implications for the understanding of DNA methylation patterns in healthy and diseased cells.  相似文献   

8.
Our previous study has shown that the placenta and kidney had different genomic methylation patterns regarding CpG island loci detected by restriction landmark genomic scanning (RLGS). To investigate whether differentiation involves changes in DNA methylation, we analyzed the rat Rcho-1 cell line, which retains trophoblast cell features and differentiates from stem cells into trophoblast giant cells in vitro. By RLGS, a total of 1,232 spots were identified in the Rcho-1 stem and differentiated giant cells. Four spots (0.3%) were detected only in giant cells, implying that the loci were originally methylated, but became demethylated during differentiation. Another four spots (0.3%) were detected only in stem cells, implying that these loci, originally unmethylated, became methylated during differentiation. DNAs from three loci that became methylated during differentiation were cloned and sequenced. All showed high homologies with expressed sequence tags (ESTs) or with genomic DNA of other species, suggesting that these loci are biologically important. Thus, the eight differentially methylated loci should be good tools to study epigenetic modification specific to differentiation of trophoblast giant cells.  相似文献   

9.
Summary: Mammalian cloning has been accomplished in several mammalian species by nuclear transfer. However, the production rate of cloned animals is quite low, and many cloned offspring die or show abnormal symptoms. A possible cause of the low success rate of cloning and abnormal symptoms in many cloned animals is the incomplete reestablishment of DNA methylation after nuclear transfer. We first analyzed tissue‐specific methylation patterns in the placenta, skin, and kidney of normal B6D2F1 mice. There were seven spots/CpG islands (0.5% of the total CpG islands detected) methylated differently in the three different tissues examined. In the placenta and skin of two cloned fetuses, a total of four CpG islands were aberrantly methylated or unmethylated. Interestingly, three of these four loci corresponded to the tissue‐specific loci in the normal control fetuses. The extent of aberrant methylation of genomic DNA varied between the cloned animals. In cloned animals, aberrant methylation occurred mainly at tissue‐specific methylated loci. Individual cloned animals have different methylation aberrations. In other words, cloned animals are by no means perfect copies of the original animals as far as the methylation status of genomic DNA is concerned. genesis 30:45–50, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
11.
12.
Altered DNA methylation has been linked to neoplastic cell transformation and is a hallmark of cancer progression. Therefore, the screening for differentially methylated sequences as tumor biomarkers has a significant implication in the clinical setting. To determine the cancer-linked alterations in DNA methylation pattern, we have applied an endonuclease, McrBC, to the existing methylation-sensitive arbitrarily primed polymerase chain reaction (msAP-PCR) method and developed McrBC-msAP-PCR. This modified approach allows detection of differentially methylated sites within unmethylated DNA domains enriched by regulatory sequences and CpG islands. In this method, we used digestion of DNA with the McrBC methylation-sensitive endonuclease to selectively exclude the methylated fraction of DNA, which comprises interspersed and tandem-repeated sequences and exons other than first exons, from analysis. The subsequent digestion of unmethylated DNA fragments with SmaI and HpaII methylation-sensitive restriction endonucleases followed by AP-PCR amplification resulted in the detection of unknown unique sequences associated with cancer-linked methylation changes in genomic DNA. Hypermethylation and hypomethylation are visualized by the increase or decrease in the band intensity of DNA fingerprints. By using this technique, we were able to differentiate clearly, identify, and characterize a number of novel unique DNA sequences with differentially methylated sites in normal and breast cancer cell lines and in normal and rat tumor liver tissues.  相似文献   

13.
CpG islands (CGIs) in human genomic DNA are GC-rich fragments whose aberrant methylation is associated with human disease development. In the current study, methylation-sensitive mirror orientation selection (MS-MOS) was developed to efficiently isolate and enrich unmethylated CGIs from human genomic DNA. The unmethylated CGIs prepared by the MS-MOS procedure subsequently were used to construct a CGI library. Then the sequence characteristics of cloned inserts of the library were analyzed by bioinformatics tools, and the methylation status of CGI clones was analyzed by HpaII PCR. The results showed that the MS-MOS method could be used to isolate up to 0.001% of differentially existed unmethylated DNA fragments in two complex genomic DNA. In the CGI library, 34.1% of clones had insert sequences satisfying the minimal criteria for CGIs. Excluding duplicates, 22.0% of the 80,000 clones were unique CGI clones, representing 60% of all the predicted CGIs (about 29,000) in human genomic DNA, and most or all of the CGI clones were unmethylated in human normal cell DNA based on the HpaII PCR analysis results of randomly selected CGI clones. In conclusion, MS-MOS was an efficient way to isolate and enrich human genomic CGIs. The method has powerful potential application in the comprehensive identification of aberrantly methylated CGIs associated with human tumorigenesis to improve understanding of the epigenetic mechanisms involved.  相似文献   

14.
Tissue specific differentially methylated regions (TDMRs) were identified and localized in the mouse genome using second generation virtual RLGS (vRLGS). Sequenom MassARRAY quantitative methylation analysis was used to confirm and determine the fine structure of tissue specific differences in DNA methylation. TDMRs have a broad distribution of locations to intragenic and intergenic regions including both CpG islands, and non-CpG islands regions. Somewhat surprising, there is a strong bias for TDMR location in non-promoter intragenic regions. Although some TDMRs are within or close to repeat sequences, overall they are less frequently associated with repetitive elements than expected from a random distribution. Many TDMRs are methylated at early developmental stages, but unmethylated later, suggesting active or passive demethylation, or expansions of populations of cells with unmethylated TDMRs. This is notable during postnatal testis differentiation where many testis specific TDMRs become progressively "demethylated". These results suggest that methylation changes during development are dynamic, involve demethylation and methylation, and may occur at late stages of embryonic development or even postnatally.  相似文献   

15.
Optimization of highly sensitive methods to detect methylation of CpG islands in gene promoter regions requires adequate methylated and unmethylated control DNA. Whereas universal methylated control DNA is available, universal unmethylated control (UUC) DNA has not been made because demethylase is not available to remove methyl groups from all methylated cytosines. On the basis that DNA synthesized by DNA polymerase does not contain methylated cytosines, we developed a method to create UUC DNA by nested whole genome amplification (WGA) with phi29 DNA polymerase. Contamination of the template genomic DNA in UUC was only 3.1 x 10(-7), below the detection limit of sensitive methods used for methylation studies such as methylation-specific PCR. Assessment of microsatellite markers demonstrated that even nested phi29 WGA achieves highly accurate and homogeneous amplification with very low amounts of genomic DNA as an initial template. The UUC DNA created by nested phi29 WGA is practically very useful for methylation analysis.  相似文献   

16.
17.
18.
19.
20.
DNA methylation in states of cell physiology and pathology   总被引:11,自引:0,他引:11  
DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide) while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation). The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences) five new genes which are potential biomarkers of lung cancer have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号