首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental threats, such as habitat size reduction or environmental pollution, may not cause immediate extinction of a population but may shorten the expected time to extinction. We developed a method to estimate the mean time to extinction for a density-dependent population with environmental fluctuation and to compare the impacts of different risk factors. We first derived a formula of the mean extinction time for a population with logistic growth and environmental and demographic stochasticities expressed as a stochastic differential equation model (canonical model). The relative importance of different risk factors is evaluated by the decrease in the mean extinction time. We studied an approximated formula for the reduction in habitat size that enhances extinction risk by the same magnitude as a given decrease in survivorship caused by toxic chemical exposure. In a large population (large K) or in a slowly growing population (small r), a small decrease in survivorship can cause the extinction risk to increase, corresponding to a significant reduction in the habitat size. Finally, we studied an approximate maximum likelihood estimate of three parameters (intrinsic growth rate r, carrying capacity K, and environmental stochasticity σ 2 e ) from time series data. By Monte Carlo sampling, we can remove the bias very effectively and determine the confidence interval. We discuss here how the reliability of the estimate changes with the length of time series. If we know the intrinsic rate of population growth r, the mean extinction time is estimated quite accurately even when only a short time series is available for parameter estimation. Received: March 31, 1999 / Accepted: November 9, 1999  相似文献   

2.
The role of historical factors in driving latitudinal diversity gradients is poorly understood. Here, we used an updated global phylogeny of terrestrial birds to test the role of three key historical factors—speciation, extinction, and dispersal rates—in generating latitudinal diversity gradients for eight major clades. We fit a model that allows speciation, extinction, and dispersal rates to differ, both with latitude and between the New and Old World. Our results consistently support extinction (all clades had lowest extinction where species richness was highest) as a key driver of species richness gradients across each of eight major clades. In contrast, speciation and dispersal rates showed no consistent latitudinal patterns across replicate bird clades, and thus are unlikely to represent general underlying drivers of latitudinal diversity gradients.  相似文献   

3.
A simple (deterministic) population dynamics model is used to examine the level of fishing mortality at which a population is expected to be driven to extinction (F crash). Values for F crash are determined for six marine fish species (Cape hake, blue grenadier, blue warehou, school shark, gummy shark, and orange roughy) subject to commercial harvest. The sensitivity of the value of F crash to changing the selectivity pattern of the fishery and the relationship between the size of the reproductive component of the population and subsequent births to allow for depensatory effects is examined. F crash is greatest for highly productive species and when the fishery does not target immature animals. The ratio of F crash to the fishing mortality at which maximum sustainable yield is achieved, F MSY, is a decreasing function of the productivity of the population. The possibility of depensation has little impact on F MSY but can substantially reduce the ratio F crash/F MSY. A series of stochastic simulations is conducted to assess the probability of detecting that the extent of fishing exceeds F crash using the current IUCN A criterion. The results of these simulations are also used to determine the probability that the IUCN A criteria will be triggered when fishing takes place at F MSY. The results indicate that there are substantial probabilities of incorrectly identifying species being harvested at F MSY as being threatened during the 'fishing down' phase and also of not identifying species actually at risk of extinction if fishing mortality is not reduced. Received: January 14, 1999 / Accepted: April 27, 1999  相似文献   

4.
Ecological theory suggests that several demographic factors influence metapopulation extinction risk, including synchrony in population size between subpopulations, metapopulation size and the magnitude of fluctuations in population size. Theoretically, each of these is influenced by the rate of migration between subpopulations. Here we report on an experiment where we manipulated migration rate within metapopulations of the freshwater zooplankton Daphnia magna to examine how migration influenced each of these demographic variables, and subsequent effects on metapopulation extinction. In addition, our experimental procedures introduced unplanned but controlled differences between metapopulations in light intensity, enabling us to examine the relative influences of environmental and demographic factors. We found that increasing migration rate increased subpopulation synchrony. We failed to detect effects of migration on population size and fluctuations in population size at the metapopulation or subpopulation level, however. In contrast, light intensity did not influence synchrony, but was positively correlated with population size and negatively correlated with population fluctuation. Finally, synchrony did not influence time to extinction, while population size and the magnitude of fluctuations did. We conclude that environmental factors had a greater influence on extinction risk than demographic factors, and that metapopulation size and fluctuation were more important to extinction risk than metapopulation synchrony.  相似文献   

5.
In 1994, (the World Conservation Union (IUCN) made new quantitative criteria for Red List Categories. Among these, criterion A is based on the reduction rate of population size and is not linked to absolute population size. This is because for most unexploited threatened species absolute population size is completely uncertain. Criterion E is directly concerned with the extinction probability within a specified period. Criterion A is applied to marine fish species, including tuna, which are exploited by commercial fishing. However, for many fish that are commercially exploited, the absolute number of mature individuals and the variance in its yearly reduction rate are often known. In addition, extinction probability depends on absolute population size. There is an inconsistency between criterion A and E when population size is large enough. This is the case for tuna. In this paper, we propose a new criterion for threatened species based on the average reduction rate and the current population size. Criterion A is consistent with criterion E as long as the population size is very small. We also propose a method for estimating the extinction risk of tuna based on the variance of the reduction rate. We investigated the sensitivity in the uncertain parameters involved in the models and concluded that tuna is unlikely to be listed as critically endangered but that southern bluefin tuna may be listed as vulnerable.  相似文献   

6.
Four conditioned approach experiments with rats assessed for effects of number of acquisition trials on extinction of conditioned responding, when number of acquisition sessions and total acquisition time were held constant. In Experiment 1, 32 trials per acquisition session led to more extinction responding than did 1 or 2 trials per session but less than did 4 trials per session. In Experiment 2, 2 trials per acquisition session led to more spontaneous recovery than did 32 trials per session. These latter findings are reminiscent of the overtraining extinction effect (OEE). Experiment 3 attempted to reduce the OEE with a preconditioning phase of partial reinforcement. Experiment 4 attempted to reduce the beneficial within-subject effects of increasing the number of acquisition trials on extinction observed by Gottlieb and Rescorla (2010) by extinguishing stimuli in different sessions. Overall, results suggest a procedural asymmetry: between-subject, increasing the number of trials between any pair of trials does not lead to greater persistence of responding during extinction; within-subject, it does. Results are discussed from an associative perspective, with a focus on explanations involving either frustration or comparator mechanisms, and from an information processing perspective, with a focus on Rate Estimation Theory.  相似文献   

7.
We estimate the extinction probability of a large and decreasing population, the southern bluefin tuna. This tuna was listed as critically endangered by the World Conservation Union (IUCN) in 1996. However, the absolute population size is still large and the extinction probability within the next half century is negligible if the recent population decline rate does not increase in the future. IUCN’s criterion with respect to the population decline rate should be linked to the absolute population size, if this is estimated. Several methods estimating the probability of extinction conclude that the southern bluefin tuna population will be below 500 mature individuals within the next 100 years and may be listed as vulnerable. These analyses suggest that extinction risk assessment is useful for management action for taxa that still have large population and are rapidly decreasing.  相似文献   

8.
Extinction performance is often used to assess underlying psychological processes without the interference of reinforcement. For example, in the extinction/reinstatement paradigm, motivation to seek drug is assessed by measuring responding elicited by drug-associated cues without drug reinforcement. However, extinction performance is governed by several psychological processes that involve motivation, memory, learning, and motoric functions. These processes are confounded when overall response rate is used to measure performance. Based on evidence that operant responding occurs in bouts, this paper proposes an analytic procedure that separates extinction performance into several behavioral components: (1-3) the baseline bout initiation rate, within-bout response rate, and bout length at the onset of extinction; (4-6) their rates of decay during extinction; (7) the time between extinction onset and the decline of responding; (8) the asymptotic response rate at the end of extinction; (9) the refractory period after each response. Data that illustrate the goodness of fit of this analytic model are presented. This paper also describes procedures to isolate behavioral components contributing to extinction performance and make inferences about experimental effects on these components. This microscopic behavioral analysis allows the mapping of different psychological processes to distinct behavioral components implicated in extinction performance, which may further our understanding of the psychological effects of neurobiological treatments.  相似文献   

9.
Extinction is ubiquitous in natural systems and the ultimate fate of all biological populations. However, the factors that contribute to population extinction are still poorly understood, particularly genetic diversity and composition. A laboratory experiment was conducted to examine the influences of environmental variation and genotype diversity on persistence in experimental Daphnia magna populations. Populations were initiated in two blocks with one, two, three, or six randomly selected and equally represented genotypes, fed and checked for extinction daily, and censused twice weekly over a period of 170 days. Our results show no evidence for an effect of the number of genotypes in a population on extinction hazard. Environmental variation had a strong effect on hazards in both experimental blocks, but the direction of the effect differed between blocks. In the first block, variable environments hastened extinction, while in the second block, hazards were reduced under variable food input. This occurred despite greater fluctuations in population size in variable environments in the second block of our experiment. Our results conflict with previous studies, where environmental variation consistently increased extinction risk. They are also at odds with previous studies in other systems that documented significant effects of genetic diversity on population persistence. We speculate that the lack of sexual reproduction, or the phenotypic similarity among our experimental lines, might underlie the lack of a significant effect of genotype diversity in our study.  相似文献   

10.

Aim

Understanding how species' traits and environmental contexts relate to extinction risk is a critical priority for ecology and conservation biology. This study aims to identify and explore factors related to extinction risk between herbaceous and woody angiosperms to facilitate more effective conservation and management strategies and understand the interactions between environmental threats and species' traits.

Location

China.

Taxon

Angiosperms.

Methods

We obtained a large dataset including five traits, six extrinsic variables, and 796,118 occurrence records for 14,888 Chinese angiosperms. We assessed the phylogenetic signal and used phylogenetic generalized least squares regressions to explore relationships between extinction risk, plant traits, and extrinsic variables in woody and herbaceous angiosperms. We also used phylogenetic path analysis to evaluate causal relationships among traits, climate variables, and extinction risk of different growth forms.

Results

The phylogenetic signal of extinction risk differed among woody and herbaceous species. Angiosperm extinction risk was mainly affected by growth form, altitude, mean annual temperature, normalized difference vegetation index, and precipitation change from 1901 to 2020. Woody species' extinction risk was strongly affected by height and precipitation, whereas extinction risk for herbaceous species was mainly affected by mean annual temperature rather than plant traits.

Main conclusions

Woody species were more likely to have higher extinction risks than herbaceous species under climate change and extinction threat levels varied with both plant traits and extrinsic variables. The relationships we uncovered may help identify and protect threatened plant species and the ecosystems that rely on them.  相似文献   

11.
Summary Adults of a stink bug,Megacopta punctissimum, form aggregations on stems of the bush-clover,Lespedeza crytobotria, in spring. They do not oviposit there, but feed and mate within aggregations. Oviposition is made on other leguminous plants such as the kudzu-vine,Pueraria lobata. Mean size of aggregations (groups of two or more individuals which sit on a stem at distance less than 3 cm from their nearest neighbors) consisted of 4.4 individuals. The sex ratios within aggregations were similar to overall sex ratio of the population including solitary individuals (0.58). More than 50% of females found in aggregations were copulating. Percentage of femalesin copula in larger aggregations was higher than that in smaller aggregations, and this difference was considered to be caused by the higher chance of sexual enconters in larger aggregations. It was suggested that the aggregation of this species on the bush-clover is not a ‘harem’ (a male monopolizes a group of females reported in some other stink bugs) but is mating aggregation to raise the chance of mating. This work was partially supported by Grant-in-Aid (No. 56480039) from the Ministry of Education, Science and Culture.  相似文献   

12.
13.
14.
Alamethicin is a 19-amino-acid residue hydrophobic peptide of the peptaibol family that has been the object of numerous studies for its ability to produce voltage-dependent ion channels in membranes. In this work, for the first time electron paramagnetic resonance spectroscopy was applied to study the interaction of alamethicin with oriented bicelles. We highlighted the effects of increasing peptide concentrations on both the peptide and the membrane in identical conditions, by adopting a twofold spin labeling approach, placing a nitroxide moiety either on the peptide or on the phospholipids. The employment of bicelles affords additional spectral resolution, thanks to the formation of a macroscopically oriented phase that allows to gain information on alamethicin orientation and dynamics. Moreover, the high viscosity of the bicellar solution permits the investigation of the peptide aggregation properties at physiological temperature. We observed that, at 35 °C, alamethicin adopts a transmembrane orientation with the peptide axis forming an average angle of 25° with respect to the bilayer normal. Moreover, alamethicin maintains its dynamics and helical tilt constant at all concentrations studied. On the other hand, by increasing the peptide concentration, the bilayer experiences an exponential decrease of the order parameter, but does not undergo micellization, even at the highest peptide to lipid ratio studied (1:20). Finally, the aggregation of the peptide at physiological temperature shows that the peptide is monomeric at peptide to lipid ratios lower than 1:50, then it aggregates with a rather broad distribution in the number of peptides (from 6 to 8) per oligomer.  相似文献   

15.
Fragile X (FX) is the most common genetic cause of intellectual disability and autism. Previous studies have shown that partial inhibition of metabotropic glutamate receptor signaling is sufficient to correct behavioral phenotypes in a mouse model of FX, including audiogenic seizures, open‐field hyperactivity and social behavior. These phenotypes model well the epilepsy (15%), hyperactivity (20%) and autism (30%) that are comorbid with FX in human patients. Identifying reliable and robust mouse phenotypes to model cognitive impairments is critical considering the 90% comorbidity of FX and intellectual disability. Recent work characterized a five‐choice visuospatial discrimination assay testing cognitive flexibility, in which FX model mice show impairments associated with decreases in synaptic proteins in prefrontal cortex (PFC). In this study, we sought to determine whether instrumental extinction, another process requiring PFC, is altered in FX model mice, and whether downregulation of metabotropic glutamate receptor signaling pathways is sufficient to correct both visuospatial discrimination and extinction phenotypes. We report that instrumental extinction is consistently exaggerated in FX model mice. However, neither the extinction phenotype nor the visuospatial discrimination phenotype is corrected by approaches targeting metabotropic glutamate receptor signaling. This work describes a novel behavioral extinction assay to model impaired cognition in mouse models of neurodevelopmental disorders, provides evidence that extinction is exaggerated in the FX mouse model and suggests possible limitations of metabotropic glutamate receptor‐based pharmacotherapy.  相似文献   

16.
Although recent research has shown that non-indigenous species often increase local-scale species richness, few have documented how such increases translate into compositional changes across biological scales. In particular, transformations of biodiversity patterns may be acute within regions that are simultaneously extinction and invasion hotspots (i.e. double-hotspots), such as the Hawaiian Islands. Nevertheless, modification of diversity relationships in such places are rarely quantified. Here, I utilize passerine non-indigenous species introductions and native species extinctions on Hawaii to quantitatively explore the changing relationship between within- (alpha), between- (beta), and across-island (gamma) diversity. My results indicate that, even after incorporating the enrichment effects of non-indigenous species invasions, across-island passerine diversity has dropped substantially. Nevertheless, within-island diversity has remained largely unchanged, or in some cases increased. Perhaps the more profound changes in diversity have come from the loss of between-island diversity. Because nearly all native Hawaiian passerines are extinct or near extinction, the current diversity relationships are inordinately influenced by patterns in the transportation and establishment of non-indigenous birds. These human-induced ‘dispersal’ patterns are markedly different from natural ones. In addition, these dispersal patterns may be unique to vagile species such as birds, thus indicating that transformations of diversity within other groups (e.g. plants or freshwater fishes) currently inhabiting Hawaii may differ. These results suggest the need to explore how alteration of diversity relationships translate into the loss of ecosystem services, or other valued components of biodiversity.  相似文献   

17.
Stefan Auer  Dimo Kashchiev 《Proteins》2010,78(11):2412-2416
Under favorable conditions, many proteins can assemble into macroscopically large aggregates such as the amyloid fibrils that are associated with Alzheimer's, Parkinson's, and other neurological and systemic diseases. The overall process of protein aggregation is characterized by initial lag time during which no detectable aggregation occurs in the solution and by maximal aggregation rate at which the dissolved protein converts into aggregates. In this study, the correlation between the lag time and the maximal rate of protein aggregation is analyzed. It is found that the product of these two quantities depends on a single numerical parameter, the kinetic index of the curve quantifying the time evolution of the fraction of protein aggregated. As this index depends relatively little on the conditions and/or system studied, our finding provides insight into why for many experiments the values of the product of the lag time and the maximal aggregation rate are often equal or quite close to each other. It is shown how the kinetic index is related to a basic kinetic parameter of a recently proposed theory of protein aggregation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The coexistence of many species within ecological communities poses a long‐standing theoretical puzzle. Modern coexistence theory (MCT) and related techniques explore this phenomenon by examining the chance of a species population growing from rarity in the presence of all other species. The mean growth rate when rare, , is used in MCT as a metric that measures persistence properties (like invasibility or time to extinction) of a population. Here we critique this reliance on and show that it fails to capture the effect of temporal random abundance variations on persistence properties. The problem becomes particularly severe when an increase in the amplitude of stochastic temporal environmental variations leads to an increase in , since at the same time it enhances random abundance fluctuations and the two effects are inherently intertwined. In this case, the chance of invasion and the mean extinction time of a population may even go down as increases.  相似文献   

19.
20.
We consider a host-parasitoid system with individuals moving on a square grid of patches. We study the effects of increasing movement frequency of hosts and parasitoids on the spatial dynamics of the system. We show that there exists a threshold value of movement frequency above which spatial synchrony occurs and the dynamics of the system can be described by an aggregated model governing the total population densities on the grid. Numerical simulations show that this threshold value is usually small. This allows using the aggregated model to make valid predictions about global host-parasitoid spatial dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号