首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a model system of normal human keratinocytes (HKc) and HKc immortalized with human papillomavirus type 16 DNA (HKc/HPV16) to investigate the effects of alpha interferons (IFN-alpha) on the growth of HPV16-immortalized human epithelial cells, on HPV16-mediated immortalization of normal HKc, and on HPV16 gene expression. Normal HKc and HKc/HPV16 were treated with several recombinant human IFN-alpha subtypes (IFN-alpha B, IFN-alpha D, and IFN-alpha B/D). These IFN-alpha subtypes inhibited proliferation of both normal HKc and HKc/HPV16 in a dose-dependent fashion; however, although 1,000 to 10,000 U of IFN-alpha per ml were required to inhibit growth of normal HKc, HKc/HPV16 were substantially growth inhibited by 100 U/ml. In addition, 100 U of IFN-alpha B/D per ml inhibited transformation of normal HKc by HPV16 DNA. Northern (RNA) blot analysis showed no effect of IFN-alpha on the mRNA levels of the HPV16 E6 and E7 open reading frames. However, immunofluorescence studies of the HPV16 E6 and E7 proteins with anti-E6 and anti-E7 monoclonal antibodies showed significant inhibition of E7 protein expression in cells treated with IFN-alpha, whereas E6 protein expression was not altered. The inhibition of E7 protein expression in cells treated with IFN-alpha was further confirmed by Western immunoblot analysis. These results suggest that IFN-alpha may inhibit HPV16-mediated transformation of HKc and proliferation of HKc/HPV16 through an inhibition of HPV16 E7 protein expression.  相似文献   

2.
3.
Jeon JH  Choi KH  Cho SY  Kim CW  Shin DM  Kwon JC  Song KY  Park SC  Kim IG 《The EMBO journal》2003,22(19):5273-5282
Transglutaminase 2 (TGase 2) is one of a family of enzymes that catalyze protein modification through the incorporation of polyamines into substrates or the formation of protein crosslinks. However, the physiological roles of TGase 2 are largely unknown. To elucidate the functions of TGase 2, we have searched for its interacting proteins. Here we show that TGase 2 interacts with E7 oncoprotein of human papillomavirus type 18 (HPV18) in vitro and in vivo. TGase 2 incorporates polyamines into a conserved glutamine residue in the zinc-binding domain of HPV18 E7 protein. This modification mediates the inhibition of E7's Rb binding ability. In contrast, TGase 2 does not affect HPV16 E7, due to absence of a glutamine residue at this polyamination site. Using E7 mutants, we demonstrate that TGase 2-dependent inhibition of HPV E7 function correlates with the presence of the polyamination site. Our results indicate that TGase 2 is an important cellular interfering factor and define a novel host-virus interaction, suggesting that the inability of TGase 2 to inactivate HPV16 E7 could explain the high prevalence of HPV16 in cervical cancer.  相似文献   

4.
The E7 protein of human papillomavirus type 16 (HPV16) transforms cultured cells and cooperates with the ras or fos oncogenes in the transformation of primary cells. In this study we have investigated the phosphorylation of E7. When we immunoprecipitated E7 from CaSki cells with a rabbit polyclonal antiserum to a bacterial fusion protein (trpE-E7), we found that E7 was phosphorylated at serine residues contained in five characteristic thermolysin peptides. Immunoprecipitated E7, and fusion proteins harboring the E7 protein from various HPV types, could all be specifically phosphorylated in vitro by the ubiquitous, growth factor-activated casein kinase II (CKII). Comparative peptide mapping showed that the sites of in vivo and in vitro phosphorylation are the same. CKII was shown previously to specifically phosphorylate serine or threonine residues within a cluster of acidic amino acids. The E7 protein contains such a sequence between amino acids 30 and 37. When a synthetic peptide corresponding to this region of E7 was phosphorylated by CKII in vitro, its thermolysin digestion products were the same as those in the phosphorylated E7 protein. We conclude that E7 is phosphorylated in vivo only at serines within the predicted CKII site and that CKII, or a CKII-like enzyme, participates in the reaction. Both the E1A and SV40 large T proteins contain similar CKII consensus sites proximal to the regions required for their associations with the retinoblastoma gene product (p105Rb). Thus it is conceivable that CKII phosphorylation can modulate the interaction between the transforming proteins and the retinoblastoma gene product.  相似文献   

5.
S H Shakin  S A Liebhaber 《Biochemistry》1987,26(22):7188-7193
The translational efficiency of an mRNA may be determined at the step of translational initiation by the efficiency of its interaction with the cap binding protein complex. To further investigate the role of these interactions in translational control, we compare in vitro the relative sensitivities of rabbit and human alpha- and beta-globin mRNAs to translational inhibition by cap analogues. We find that rabbit beta-globin mRNA is more resistant to translational inhibition by cap analogues than rabbit alpha-globin mRNA, while in contrast, human beta-globin mRNA is more sensitive to cap analogue inhibition than human alpha-globin mRNA. This opposite pattern of translational inhibition by cap analogues of the rabbit and human alpha- and beta-globin mRNAs is unexpected as direct in vivo and in vitro comparisons of polysome profiles reveal parallel translational handling of the alpha- and beta-globin mRNAs from these two species. This discordance between the relative translational sensitivities of these mRNAs to cap analogues and their relative ribosome loading activities suggests that cap-dependent events may not be rate limiting in steady-state globin translation.  相似文献   

6.
Some genital human papillomavirus (HPV) types, such as 16 and 18, are highly associated with malignant cervical tumors while others, such as HPV 6, are only rarely found in these malignancies. The E7 oncoproteins of HPV 6, 16 and 18 each have a 17 amino acid region with striking homology to adenovirus E1a and SV40 LT. E1a, LT and the E7 oncoprotein of HPV16 all bind the cellular Rb protein in vitro, and for E1a and LT this region of homology contains sequences essential for interaction with Rb. We have now found that in HPV 16 E7 this region (amino acids 21-37) contains two separate biochemical activities, each of which contributes to E7-mediated transformation. Rb binding was localized to the N terminus of this region, while the C terminus was shown to serve as a substrate for casein kinase (CK) II, which phosphorylated serine-31 and serine-32. Replacement of the two serines by non-phosphorylatable amino acids led to a reduction in transforming activity and abolished phosphorylation but did not affect Rb binding. Rb binding and CK II phosphorylation were also examined for the E7 proteins of HPV 6 and HPV 18. HPV 16 and 18 E7 bound similar amounts of Rb, but HPV 6 E7 consistently bound less. Phosphorylation rates also varied, with HPV 18 E7 being 2-fold faster than HPV 16 E7, which in turn was 2-fold faster than HPV 6 E7. We conclude that Rb binding and phosphorylation of E7 by CKII are independent activities which are required for efficient transformation by E7 and that these activities correlate directly with the relative oncogenic potential of these viruses.  相似文献   

7.
The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105-RB). Similar to the E7 protein of HPV-16, the E7 proteins of HPV-18, HBV-6b and HPV-11 were found to associate with p105-RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV-16 and HPV-18) formed complexes with p105-RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105-RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV-1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105-RB. The amino acid sequences of the HPV-16 E7 protein involved in complex formation with p105-RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105-RB. Furthermore, the HPV-16 E7-p105-RB complex was detected in an HPV-16-transformed human keratinocyte cell line.  相似文献   

8.
A panel of murine mAb raised against a MS2 replicase/HPV 18 E7 fusion protein included 23 reactive by ELISA with HPV 18 E7 determinants. A total of 19 of the 23 recognized linear epitopes in the N-terminal region of the E7 molecule, while the other four were deduced by binding inhibition assays to recognize conformational determinants in this region. All tested antibodies precipitated a 14-kDa peptide doublet that corresponded with the predicted size of the E7 protein, from HeLa cells, but not from HPV 16 E7 containing CaSki cells. HPV 18 E7 protein was detected by immunolabeling with electron microscopy in both the nucleus and the cytoplasm of HeLa cells with the greater proportion occurring in the cytoplasm. No antibody reacted specifically by indirect immunofluorescence with HeLa cells. Weak cross-reactivity of some mAb with the E6 MS2-replicase fusion protein of HPV 16 was detected by ELISA, but no protein of the appropriate size was immunoprecipitated from CaSki cells. It is concluded that the B cell epitopes on the HPV 18 E7 transforming protein are located in the N-terminal region of the molecule and that some are weakly cross-reactive with HPV 16 E6 protein. E7 protein is either present in HeLa cells at a concentration too low to be detected by indirect immunofluorescence, or the N-terminal epitopes are masked by protein conformation or interaction with cellular or other viral components.  相似文献   

9.
He W  Staples D  Smith C  Fisher C 《Journal of virology》2003,77(19):10566-10574
Addition of human papillomavirus (HPV) E7 CDK2/cyclin A or CDK2/cyclin E, purified from either insect cells or bacteria, dramatically upregulates histone H1 kinase activity. Activation is substrate specific, with a smaller effect noted for retinoblastoma protein (Rb). The CDK2 stimulatory activity is equivalent in high-risk (HPV type 16 [HPV16] and HPV31) and low-risk (HPV6b) E7. Mutational analyses of HPV16 E7 indicate that the major activity resides in amino acids 9 to 38, spanning CR1 and CR2, and does not require casein kinase II or Rb-binding domain functions. Synthetic peptides spanning HPV16 amino acid residues 9 to 38 also activate CDK2. Peptides containing this sequence that carry biotin on the carboxy terminus, as well as a photoactivated cross-linking group (benzophenone), also activate the complex and covalently associate with the CDK2/cyclin A complex in a specific manner requiring UV. Cross-linking studies that use protein monomers detect association of the E7 peptides with cyclin A but not CDK2. Together, our results indicate a novel mechanism whereby E7 promotes HPV replication by directly altering CDK2 activity and substrate specificity.  相似文献   

10.
Human papillomavirus (HPV) is the causative agent of human cervical cancer and has been associated with oropharyngeal squamous cell carcinoma development. Although prophylactic vaccines have been developed, there is a need to develop new targeted therapies for individuals affected with malignant infected lesions in these locations, which must be tested in appropriate models. Cutaneous beta HPV types appear to be involved in skin carcinogenesis. Virus oncogenicity is partly achieved by inactivation of retinoblastoma protein family members by the viral E7 gene. Here we show that the E7 protein of cutaneous beta HPV5 binds pRb and promotes its degradation. In addition, we described an in vivo model of HPV-associated disease in which artificial human skin prepared using primary keratinocytes engineered to express the E7 protein is engrafted onto nude mice. Expression of E7 in the transplants was stably maintained for up to 6 months, inducing the appearance of lesions that, in the case of HPV16 E7, histologically resembled human anogenital lesions caused by oncogenic HPVs. Moreover, it was confirmed through biomarker expression analysis via immunodetection and/or quantitative PCR from mRNA and miRNA that the 16E7-modified engrafted skin shares molecular features with human HPV-associated pretumoral and tumoral lesions. Finally, our findings indicate a decrease of the in vitro capacity of HPV5 E7 to reduce pRb levels in vivo, possibly explaining the phenotypical differences when compared with 16E7-grafts. Our model seems to be a valuable platform for basic research into HPV oncogenesis and preclinical testing of HPV-associated antitumor therapies.  相似文献   

11.
Cervical carcinoma is the predominant cancer among malignancies in women throughout the world, and human papillomavirus (HPV) 16 is the most common agent linked to human cervical carcinoma. The present study was performed to investigate the mechanisms of immune escape in HPV-induced cervical cancer cells. The presence of HPV oncoproteins E6 and E7 in the extracellular fluids of HPV-containing cervical cancer cell lines SiHa and CaSki was demonstrated by ELISA. The effect of HPV 16 oncoproteins E6 and E7 on the production of IFN-gamma by IL-18 was assessed. E6 and E7 proteins reduced IL-18-induced IFN-gamma production in both primary PBMCs and the NK0 cell line. FACS analysis revealed that the viral oncoproteins reduced the binding of IL-18 to its cellular surface receptors on NK0 cells, whereas there was no effect of oncoproteins on IL-1 binding to its surface IL-1 receptors on D10S, a subclone of the murine Th cell D10.G4.1. In vitro pull-down assays also revealed that the viral oncoproteins and IL-18 bound to IL-18R alpha-chain competitively. These results suggest that the extracellular HPV 16 E6 and E7 proteins may inhibit IL-18-induced IFN-gamma production locally in HPV lesions through inhibition of IL-18 binding to its alpha-chain receptor. Down-modulation of IL-18-induced immune responses by HPV oncoproteins may contribute to viral pathogenesis or carcinogenesis.  相似文献   

12.
The human DEK proto-oncogene is a nucleic acid binding protein with suspected roles in human carcinogenesis, autoimmune disease, and viral infection. Intracellular DEK functions, however, are poorly understood. In papillomavirus-positive cervical cancer cells, downregulation of viral E6/E7 oncogene expression results in cellular senescence. We report here the specific repression of DEK message and protein levels in senescing human papillomavirus type 16- (HPV16-) and HPV18-positive cancer cell lines as well as in primary cells undergoing replicative senescence. Cervical cancer cell senescence was partially overcome by DEK overexpression, and DEK overexpression was sufficient for extending the life span of primary keratinocytes, supporting critical roles for this molecule as a senescence regulator. In order to determine whether DEK is a bona fide HPV oncogene target in primary cells, DEK expression was monitored in human keratinocytes transduced with HPV E6 and/or E7. The results identify high-risk HPV E7 as a positive DEK regulator, an activity that is not shared by low-risk HPV E7 protein. Experiments in mouse embryo fibroblasts recapitulated the observed E7-mediated DEK induction and demonstrated that both basal and E7-induced regulation of DEK expression are controlled by the retinoblastoma protein family. Taken together, our results suggest that DEK upregulation may be a common event in human carcinogenesis and may reflect its senescence inhibitory function.  相似文献   

13.
14.
Binding of the retinoblastoma gene product (pRB) by viral oncoproteins, including the E7 of human papillomavirus type 16 (HPV 16), is thought to be important in transformation of cells. One of the steps in transformation is the immortalization process. Here we show that mutations in E7 within the full-length genome which inhibit binding of pRB do not abrogate the ability of the HPV 16 DNA to immortalize primary human epithelial (keratinocyte) cells. A mutation in one of the cysteines of a Cys-X-X-Cys motif which is contained in the carboxy half of the E7 and is part of a zinc finger arrangement completely eliminates the ability of HPV 16 DNA to immortalize cells. The results indicate the importance of E7 in the immortalization of primary keratinocytes but suggest that the binding of pRB is not essential.  相似文献   

15.
Expression of adenovirus (Ad) serotype 2 or 5 (Ad2/5) E1A or human papillomavirus (HPV)16 E7 reportedly sensitizes cells to lysis by macrophages. Macrophages possess several mechanisms to kill tumor cells including TNF-alpha, NO, reactive oxygen intermediates (ROI), and Fas ligand (FasL). E1A sensitizes cells to apoptosis by TNF-alpha, and macrophages kill E1A-expressing cells, in part through the elaboration of TNF-alpha. However, E1A also up-regulates the expression of 70-kDa heat shock protein, a protein that inhibits killing by TNF-alpha and NO, thereby protecting cells from lysis by macrophages. Unlike E1A, E7 does not sensitize cells to killing by TNF-alpha, and the effector mechanism(s) used by macrophages to kill E7-expressing cells remain undefined. The purpose of this study was to further define the capacity of and the effector mechanisms used by macrophages to kill tumor cells that express Ad5 E1A or HPV16 E7. We found that Ad5 E1A, but not HPV16 E7, sensitized tumor cells to lysis by macrophages. Using macrophages derived from mice unable to make TNF-alpha, NO, ROI, or FasL, we determined that macrophages used NO, and to a lesser extent TNF-alpha, but not FasL or ROI, to kill E1A-expressing cells. Through the use of S-nitroso-N-acetylpenicillamine, which releases NO upon exposure to an aqueous environment, E1A was shown to directly sensitize tumor cells to NO-induced death. E1A sensitized tumor cells to lysis by macrophages despite up-regulating the expression of 70-kDa heat shock protein. In summary, E1A, but not E7, sensitized tumor cells to lysis by macrophages. Macrophages killed E1A-expressing cells through NO- and TNF-alpha-dependent mechanisms.  相似文献   

16.
E7 is the main transforming protein of human papilloma virus type 16 (HPV16) which is implicated in the formation of cervical cancer. The transforming activity of E7 has been attributed to its interaction with the retinoblastoma (Rb) tumour suppressor. However, Rb binding is not sufficient for transformation by E7. Mutations within a zinc finger domain, which is dispensable for Rb binding, also abolish E7 transformation functions. Here we show that HPV16 E7 associates with histone deacetylase in vitro and in vivo, via its zinc finger domain. Using a genetic screen, we identify Mi2beta, a component of the recently identified NURD histone deacetylase complex, as a protein that binds directly to the E7 zinc finger. A zinc finger point mutant which is unable to bind Mi2beta and histone deacetylase but is still able to bind Rb fails to overcome cell cycle arrest in osteosarcoma cells. Our results suggest that the binding to a histone deacetylase complex is an important parameter for the growthpromoting activity of the human papilloma virus E7 protein. This provides the first indication that viral oncoproteins control cell proliferation by targeting deacetylation pathways.  相似文献   

17.
18.
In most cervical cancers, DNAs of high-risk mucosotropic human papillomaviruses (HPVs), such as types 16 and 18, are maintained so as to express two viral proteins, E6 and E7, suggesting that they play important roles in carcinogenesis. The carboxy-terminal PDZ domain-binding motif of the E6 proteins is in fact essential for transformation of rodent cells and induction of hyperplasia in E6-transgenic mouse skin. To date, seven PDZ domain-containing proteins, including DLG1/hDLG, which is a human homologue of the Drosophila discs large tumor suppressor (Dlg), have been identified as targets of high-risk HPV E6 proteins. Here, we describe DLG4/PSD95, another human homologue of Dlg, as a novel E6 target. DLG4 was found to be expressed in normal human cells, including cervical keratinocytes, but only to a limited extent in both HPV-positive and HPV-negative cervical cancer cell lines. Expression of HPV18 E6 in HCK1T decreased DLG4 levels more strongly than did HPV16 E6, the carboxy-terminal motif of the proteins being critical for binding and degradation of DLG4 in vitro. DLG4 levels were restored by expression of either E6AP-specific short hairpin RNA or bovine papillomavirus type 1 E2 in HeLa but not CaSki or SiHa cells, reflecting downregulation of DLG4 mRNA as opposed to protein by an HPV-independent mechanism in HPV16-positive cancer lines. The tumorigenicity of CaSki cells was strongly inhibited by forced expression of DLG4, while growth in culture was not inhibited at all. These results suggest that DLG4 may function as a tumor suppressor in the development of HPV-associated cancers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号